首页> 外文OA文献 >Hypersonic Vehicle Trajectory Optimization and Control
【2h】

Hypersonic Vehicle Trajectory Optimization and Control

机译:高超音速飞行器轨迹优化与控制

摘要

Two classes of neural networks have been developed for the study of hypersonic vehicle trajectory optimization and control. The first one is called an 'adaptive critic'. The uniqueness and main features of this approach are that: (1) they need no external training; (2) they allow variability of initial conditions; and (3) they can serve as feedback control. This is used to solve a 'free final time' two-point boundary value problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out conditions in velocity, flightpath angle, and altitude. The second neural network is a recurrent network. An interesting feature of this network formulation is that when its inputs are the coefficients of the dynamics and control matrices, the network outputs are the Kalman sequences (with a quadratic cost function); the same network is also used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use it to control a system whose parameters are uncertain. Numerical results are presented which illustrate the potential of these methods.
机译:已经开发出两类神经网络,用于研究超音速飞行器的轨迹优化和控制。第一个被称为“自适应评论家”。这种方法的独特性和主要特点是:(1)他们不需要外部培训; (2)它们允许初始条件的可变性; (3)它们可以用作反馈控制。这用于解决“自由的最终时间”两点边界值问题,该问题使火箭燃尽时的质量最大化,同时满足速度,飞行路径角度和高度方面的预先燃尽条件。第二神经网络是递归网络。该网络公式的一个有趣特征是,当其输入为动力学和控制矩阵的系数时,网络输出为卡尔曼序列(具有二次成本函数);同样的网络也用于识别动力学和控制矩阵的系数。因此,我们可以使用它来控制参数不确定的系统。数值结果表明了这些方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号