首页> 外文OA文献 >Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction
【2h】

Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction

机译:混合机翼机身(BWB)减轻机身重量的结构设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.
机译:对于先进的混合翼飞机(BWB)飞行器,结构分析和高效加压机身配置的设计是一个具有挑战性的问题。与常规的圆柱形加压机身不同,盒式BWB机身的应力水平要高一个数量级,因为内部压力主要导致弯曲应力而不是皮肤膜应力。另外,导致的空气动力学表面的变形会显着影响举升体提供的性能优势。 X-33型航天器的加压复合保形多瓣槽也遇到了类似的问题。在早期的BWB设计研究中,拱形肋壳(VLRS),扁平肋壳(FRS);研究了拱形壳蜂窝状芯(VLHC)和扁平三明治壳蜂窝状芯(FLHC)的概念。发现扁平和拱形肋壳概念最有效。在最近的研究中,分析了一组复合夹芯板和交叉肋板。肋骨和皮肤厚度,肋骨间距和面板深度的最佳值是在压力和屈曲约束下将重量最小化的结果。此外,还开发了一套有效的多泡机身(MBF)配置概念。这种概念的特殊几何构型可通过内部加劲壳和机舱间壁中的膜应力有效地平衡内部机舱压力载荷,而外部肋壳则可防止由于外部合成压缩载荷而引起的屈曲。与早期研究相比,这些近似有限元分析的初步结果表明,最大应力和挠度逐渐降低。但是,分段单元的每单位面积的FEM重量的相对比较表明,该单元的重量仍然比常规的B777型圆柱或A380型椭圆形机身设计更高。由于与多泡状机身相关的制造问题,波音根据美国航空航天局(NASA)的480座客机研究合同,设计了带有特殊树脂膜注射(RFI)缝合碳纤维复合材料和泡沫芯的Y型支撑箱式机身替代品。 。结果表明,对于相同的材料和尺寸,可以将该结构改进为具有更好应力分布的改进型多气泡机身。

著录项

  • 作者

    Mukhopadhyay, V.;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号