首页> 外文OA文献 >Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments
【2h】

Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

机译:单晶高温合金涡轮叶片附件中的微动应力

摘要

Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.
机译:单晶镍基高温合金涡轮叶片由于其比多晶合金优越的蠕变,应力破裂,抗熔性和热机械疲劳性能而被用于火箭发动机涡轮泵和涡轮发动机。当前,使用最广泛的单晶镍基涡轮叶片超合金是PWA 1480/1493和PWA1484。这些合金在商业,军事和太空推进系统中起着重要的作用。飞机燃气轮机和火箭发动机涡轮泵叶片中的高周疲劳(HCF)引起的故障是一个普遍的问题。叶片附接区域容易出现微动疲劳故障。单晶镍基高温合金涡轮机叶片特别容易发生微动磨损,因为在连接区域由微动作用引起的地下剪切应力会导致沿八面体平面的晶体学萌生和裂纹扩展。此外,在微动引起的混合模式载荷下八面体平面上的晶体裂纹扩展比在纯模式I载荷下快了一个数量级。本文介绍了在航天飞机主机(SSME)的NASA备用高级高压燃油涡轮泵(HPFTP / AT)中使用的单晶涡轮叶片的附着区域中的接触应力评估。单晶材料具有高度正交各向异性的特性,使得晶格相对于零件几何形状的位置成为整体分析中的重要因素。使用大型3D有限元(FE)模型对叶片和附着区域进行建模,该模型能够解决接触摩擦,材料正交各向异性以及一次和二次晶体取向的变化。叶片附着区域的接触应力分析是摩擦系数和主,副晶体取向的函数,应力结果用于讨论SSME叶片的微动疲劳破坏分析。在观察到微动裂纹的位置,附着应力达到了峰值。可以看出,附着区域的微动应力随晶体取向的变化而显着变化。提出了尝试调整用于估算翼型区域疲劳寿命的技术,以计算附着区域的寿命。对于微动作用下的寿命预测,需要一种有效的模型来预测混合模式载荷下的结晶裂纹萌生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号