首页> 外文OA文献 >Indirect RBFN method with thin plate splines for numerical solution of differential equations
【2h】

Indirect RBFN method with thin plate splines for numerical solution of differential equations

机译:薄板花键的间接RBFN方法用于微分方程的数值解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper reports a mesh-free Indirect Radial Basis Function Network method (IRBFN) using Thin Plate Splines (TPSs) for numerical solution of Differential Equations (DEs) in rectangular and curvilinear coordinates. The adjustable parameters required by the method are the number of centres, their positions and possibly the order of the TPS. The first and second order TPSs which are widely applied in numerical schemes for numerical solution of DEs are employed in this study. The advantage of the TPS over the multiquadric basis function is that the former, with a given order, does not contain the adjustable shape parameter (i.e. the RBF's width) and hence TPS-based RBFN methods require less parametric study. The direct TPS-RBFN method is also considered in some cases for the purpose of comparison with the indirect TPS-RBFN method. The TPS-IRBFN method is verified successfully with a series of problems including linear elliptic PDEs, nonlinear elliptic PDEs, parabolic PDEs and Navier-Stokes equations in rectangular and curvilinear coordinates. Numerical results obtained show that the method achieves the norm of the relative error of the solution of O(10 -6) for the case of 1D second order DEs using a density of 51, of O(10 -7) for the case of 2D elliptic PDEs using a density of 20 × 20 and a Reynolds number Re = 200 for the case of Jeffery-Hamel flow with a density of 43 × 12.
机译:本文报告了一种使用薄板样条(TPS)的无网格间接径向基函数网络方法(IRBFN),用于求解矩形和曲线坐标系中的微分方程(DE)的数值。该方法所需的可调参数是中心的数量,其位置以及可能的TPS顺序。本研究采用了广泛应用于DE数值解的数值方案中的一阶和二阶TPS。与多二次基函数相比,TPS的优势在于前者具有给定的阶数,不包含可调整的形状参数(即RBF的宽度),因此基于TPS的RBFN方法需要较少的参数研究。为了与间接TPS-RBFN方法进行比较,在某些情况下还考虑了直接TPS-RBFN方法。 TPS-IRBFN方法已成功验证了一系列问题,包括线性椭圆PDE,非线性椭圆PDE,抛物线PDE和直角和曲线坐标的Navier-Stokes方程。获得的数值结果表明,该方法在密度为51的一维二阶DEs的情况下达到了O(10 -6)解的相对误差的范数,在二维情况下,密度为O(10 -7)。 Jeffery-Hamel流的密度为43×12的椭圆PDE,其密度为20×20,雷诺数Re = 200。

著录项

  • 作者

    Mai-Duy N.; Tran-Cong T.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号