首页> 外文OA文献 >Integrated radial basis function methods for structural, fluid flow and fluid-structure interaction analyses
【2h】

Integrated radial basis function methods for structural, fluid flow and fluid-structure interaction analyses

机译:用于结构,流体流动和流体-结构相互作用分析的集成径向基函数方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present research is concerned with the development of new numerical methods based on integrated radial basis function network (IRBFN) and collocation techniques for solving structural, fluid-flow and fluid-structure-interaction problems. Simply and multiply-connected domains with rectangular or nonrectangular shapes are discretised by means of Cartesian grids.An effective one-dimensional integrated radial basis function network collocation technique, namely 1D-IRBFN, is developed for the free vibration analysis of laminated composite plates using the first order shear deformation theory (FSDT). Instead of using conventional differentiated RBF networks, 1D-IRBF networks are employed on grid lines to approximate the field variables. A number of examples concerning various thickness-to-span ratios, material properties and boundary conditions of the composite plates are investigated.A novel local moving least square - one-dimensional integrated radial basis function network method, namely LMLS-1D-IRBFN, is proposed for solving incompressible viscous flow problems. The method is demonstrated with theanalyses of lid-driven cavity flow and flow past a circular cylinder using streamfunction - vorticity formulation. In this approach, the partition of unity methodis employed as a framework to incorporate the moving least square (MLS) and 1D-IRBFN techniques. The major advantages of the proposed method include:(i) a banded sparse system matrix which helps reduce the computational cost;(ii) the Kronecker-δ property of the constructed shape functions, which helps impose the essential boundary conditions in an exact manner; and(iii) high accuracy and fast convergence rate owing to the use of integration instead of conventional differentiation to construct the local RBF approximations.The LMLS-1D-IRBFN method is then developed to study natural convection flows in multiply-connected domains in terms of stream function, vorticity and temperature. The unknown stream function value on the inner boundary isdetermined by using the single-valued pressure condition (Lewis, 1979). The LMLS-1D-IRBFN method is further extended and applied to solve time dependent problems such as Burgers’ equation, unsteady flow past a square cylinderin a horizontal channel and unsteady flow past a circular cylinder. For fluid flow problems, the diffusion terms are discretised by using LMLS-1DIRBFN method, while the convection terms are explicitly calculated by using1D-IRBFN method. The present numerical procedure is combined with a domain decomposition technique to handle large-scale problems. Flow parameters such as drag coefficient, length of recirculation zone, Strouhal number and the effect of blockage ratio on the behaviour of the flow field behind the cylinder are investigated.A numerical procedure based on 1D-IRBFN and local MLS-1D-IRBFN methods is proposed for solutions of fluid-structure interaction problems. A combinationof Chorin’s method and pseudo-time subiterative technique is presented for a transient solution of 2-D Navier-Stokes equations for incompressible viscous flow in terms of primitive variables. The fluid solver is first verified through a solution of mixed convection in a lid-driven cavity with a hot-temperature lid and a cold-temperature bottom wall. The FSI numerical procedure is thenapplied to simulate flows in a lid-driven open-cavity with a flexible bottom wall. The Newmark’s method is employed for structural analysis of the flexible bottom wall based on the Euler-Bernoulli theory.Numerical results obtained in the present research are compared with corresponding analytical solutions, where possible, and numerical results by other techniques in the literature.
机译:本研究涉及基于集成径向基函数网络(IRBFN)的新数值方法的发展以及用于解决结构,流体-流动和流体-结构-相互作用问题的搭配技术。通过笛卡尔网格离散具有矩形或非矩形形状的简单和多重连接域。开发了一种有效的一维集成径向基函数网络配置技术,即一维-IRBFN,用于使用复合材料板对叠层复合板进行自由振动分析一阶剪切变形理论(FSDT)。代替使用常规的差分RBF网络,在网格线上采用1D-IRBF网络来近似场变量。研究了有关复合材料板厚厚比,材料性能和边界条件的许多例子。一种新颖的局部移动最小二乘一维集成径向基函数网络方法,即LMLS-1D-IRBFN提出用于解决不可压缩的粘性流问题。使用流函数-涡度公式分析盖子驱动的腔室流和通过圆柱体的流,证明了该方法。在这种方法中,将统一方法的划分用作合并移动最小二乘法(MLS)和1D-IRBFN技术的框架。该方法的主要优点包括:(i)带状的稀疏系统矩阵,有助于减少计算成本;(ii)所构造形状函数的Kronecker-δ性质,有助于以精确的方式施加基本边界条件; (iii)由于使用积分而不是传统的微分方法来构造局部RBF近似值,因此具有较高的准确性和快速的收敛速度。然后,开发了LMLS-1D-IRBFN方法,以研究多连通域中的自然对流流功能,涡度和温度。通过使用单值压力条件确定内边界上的未知流函数值(Lewis,1979)。 LMLS-1D-IRBFN方法得到了进一步扩展,并被用于解决与时间有关的问题,例如Burgers方程,在水平通道中流经方形圆柱体的不稳定流和通过圆柱体的不稳定流。对于流体流动问题,使用LMLS-1DIRBFN方法离散化扩散项,而使用1D-IRBFN方法显式计算对流项。本数值过程与领域分解技术相结合,可处理大规模问题。研究了阻力系数,回流区长度,斯特劳哈尔数以及堵塞率等因素对圆柱体后流场行为的影响。基于一维-IRBFN和局部MLS-1D-IRBFN方法的数值程序为提出了解决流固耦合问题的方法。针对原始变量,针对不可压缩粘性流的二维Navier-Stokes方程的瞬态解,提出了Chorin方法与伪时间迭代法的组合。首先通过带有热盖和冷底壁的盖驱动腔中的混合对流溶液验证流体求解器。然后应用FSI数值程序来模拟具有柔性底壁的盖子驱动的开放型腔中的流量。将纽马克方法用于基于欧拉-伯努利理论的柔性底壁结构分析。将本研究获得的数值结果与相应的解析解进行比较,并在可能的情况下通过文献中的其他技术进行数值分析。

著录项

  • 作者

    Ngo-Cong Duc;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号