首页> 外文期刊>Journal of computational science >High fidelity fluid-structure interaction by radial basis functions mesh adaption of moving walls: A workflow applied to an aortic valve
【24h】

High fidelity fluid-structure interaction by radial basis functions mesh adaption of moving walls: A workflow applied to an aortic valve

机译:高保真流体结构通过径向基函数的相互作用啮合移动壁的适应:应用于主动脉瓣的工作流程

获取原文
获取原文并翻译 | 示例

摘要

Fluid-Structure Interaction (FSI) can be investigated by means of non-linear Finite Element Models (FEM), suitable to capture large deflections of structural parts interacting with fluids, and Computational Fluid Dynamics (CFD). High fidelity simulations are obtained using the fine spatial resolution of both the structural and fluid computational grids. A key enabler to have a proper exchange of information between the structural solver and the fluid one is the management of the interface at wetted surfaces where the grids are usually non matching. A class of applications, known also as one-way FSI problems, involves a complex movement of the walls that is known in advance as measured or as computed by FEM, and that has to be imposed at the boundaries during a transient CFD solution. Effective methods for the time marching adaption of the whole computational grid of the CFD model according to the evolving shape of its boundaries are required. A very well established approach consists of a continuum update of the mesh that is regenerated by adding and removing cells to fit the evolution of the moving walls. In this paper, starting from the work originally presented in Meshfree Methods in Computational Sciences, ICCS 2020 [1], an innovative method based on Radial Basis Functions (RBF) mesh morphing is proposed, allowing the retention of the same mesh topology suitable for a continuum update of the shape. The proposed method is exact at a set of given key configurations and relies on shape blending time interpolation between key frames. The study of the complex motion of a Polymeric-Prosthetic Heart Valve (P-PHV) is presented using the new framework and considering as a reference the established approach based on remeshing.
机译:通过非线性有限元模型(FEM)可以研究流体结构相互作用(FSI),适用于捕获与流体相互作用的结构部件的大偏转,以及计算流体动力学(CFD)。使用结构和流体计算网格的精细空间分辨率获得高保真仿真。在结构求解器和流体之间具有正确交换信息的关键推动器是在湿润表面处的界面的管理,其中网格通常是非匹配的。也称为单向FSI问题的一类应用涉及墙壁的复杂运动,其预先通过FEAR计算或由FEM计算,并且必须在瞬态CFD解决方案期间施加在边界处。需要根据其边界的不断变化的CFD模型的整个计算网格的时间采取的有效方法。一种非常好的方法包括通过添加和移除细胞来符合移动墙的演变来再生的网格的连续更新。在本文中,从最初在计算科学无网格方法提出的工作开始,ICCS 2020 [1],基于径向基函数的创新方法(RBF)网格变形,提出了允许相同网状拓扑的保持适合连续更新形状。所提出的方法精确在一组给定的密钥配置中,并依赖于关键帧之间的形状混合时间插值。使用新框架提出了对聚合物 - 假体心脏瓣膜(P-PHV)的复杂运动的研究,并考虑了基于Reseshing的既定方法的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号