首页> 外文OA文献 >Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression
【2h】

Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression

机译:使用季节作物冠层的高光谱感应和偏最小二乘回归预测小麦的谷物蛋白含量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[Abstract]: The ability to estimate and map grain protein in cereal crops prior to harvest can benefit Australian grain growers. Segregation of grain by protein content can take advantage of price premiums, as well as to retrospectively assess the effectiveness of nutrient application strategies. This paper explores the relationships between hyperspectral data and grain protein content (GPC) in wheat (Triticum aestivum), with a view of developing predictive regression models. Canopy-scale, ground-based measurements of hyperspectral reflectance were obtained from samples located in the Formatin district of the Darling Downs, Queensland, Australia. Using partial least squares (PLS) regression, we investigated if the raw reflectance spectra, transformed data, and spectral vegetation indices (SVIs) could adequately predict grain protein content. The results showed that there are high correlations (e.g. r2=0.86, r2=0.81, r2=0.80) between reflectance data and grain protein. Cross-validated and tested PLS regression models produced low root mean square error of prediction (RMSEP) values (e.g. 0.5 percent GPC) and high prediction accuracy (e.g. 92%), confirming the usefulness of narrow-band spectral data. Bands in the near infrared (NIR) region were the most significant variables in the prediction. Despite the slightly higher correlation coefficients of SVIs, their predictive power for grain protein estimation was generally comparable with those of the raw spectra when analysed using PLS regression.
机译:[摘要]:在谷物收成之前估算和绘制谷物蛋白质的能力可以使澳大利亚的谷物种植者受益。通过蛋白质含量对谷物进行分离可以利用价格优势,并且可以回顾性地评估养分施用策略的有效性。本文探讨了高光谱数据与小麦(Triticum aestivum)籽粒蛋白质含量(GPC)之间的关系,以期建立预测回归模型。从位于澳大利亚昆士兰州Darling Downs的Formatin区的样品中获得了高光谱反射的冠层级地面测量结果。使用偏最小二乘(PLS)回归,我们调查了原始反射光谱,转换后的数据和光谱植被指数(SVI)是否可以充分预测谷物蛋白质含量。结果表明,反射率数据与谷物蛋白质之间具有高度相关性(例如,r2 = 0.86,r2 = 0.81,r2 = 0.80)。经过交叉验证和测试的PLS回归模型产生的预测均方根误差(RMSEP)值较低(例如0.5%GPC)和较高的预测准确性(例如92%),这证实了窄带光谱数据的有用性。在预测中,近红外(NIR)区域中的波段是最重要的变量。尽管SVI的相关系数稍高,但使用PLS回归分析时,它们对谷物蛋白质估计的预测能力通常与原始光谱的预测能力相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号