首页> 外文OA文献 >Mining specific and general features in both positive and negative relevance feedback
【2h】

Mining specific and general features in both positive and negative relevance feedback

机译:在正和负相关反馈中挖掘特定和一般特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

User relevance feedback is usually utilized by Web systemsudto interpret user information needs and retrieve effectiveudresults for users. However, how to discover usefuludknowledge in user relevance feedback and how to wiselyuduse the discovered knowledge are two critical problems.udHowever, understanding what makes an individual documentudgood or bad for feedback can lead to the solution of the previous problem. In TREC 2010, we participated in the Relevance Feedback Track and experimented two models for extracting pseudo-relevance feedback to improve the ranking of retrieved documents. The first one, the main run, was a pattern-based model, whereas the second one, the optionaludrun, was a term-based model. The two models consisted of two stages: one using relevance feedback provided by TREC’10 to expand queries to extract pseudo-relevanceudfeedback; one using pseudo-relevance feedback to find usefuludpatterns and terms according to their relevance and irrelevance judgements to rank documents. In this paper, theuddetailed description of those models is presented.
机译:Web系统通常使用用户相关性反馈 ud来解释用户信息需求并检索用户的有效结果。但是,如何在用户相关性反馈中发现有用的知识,以及如何明智地滥用所发现的知识是两个关键问题。 ud但是,了解使单个文档产生反馈的优缺点可以解决先前的问题。在TREC 2010中,我们参加了“相关性反馈跟踪”,并尝试了两个模型来提取伪相关性反馈以提高检索文档的排名。第一个是主运行,是基于模式的模型,而第二个是可选的 udrun,是基于术语的模型。这两个模型包括两个阶段:一个阶段使用TREC’10提供的相关性反馈来扩展查询以提取伪相关性 udfeedback。一种使用伪相关反馈,根据它们的相关性和不相关性判断找到有用的 udpattern和术语,以对文档进行排名。在本文中,将对这些模型进行详细描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号