首页> 外文OA文献 >A comparative study of classification methods for microarray data analysis
【2h】

A comparative study of classification methods for microarray data analysis

机译:芯片数据分析分类方法的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In response to the rapid development of DNA Microarray technology, many classification methods have been used for Microarray classification. SVMs, decision trees, Bagging, Boosting and Random Forest are commonly used methods. In this paper, we conduct experimental comparison of LibSVMs, C4.5, BaggingC4.5, AdaBoostingC4.5, and Random Forest on seven Microarray cancer data sets. The experimental results show that all ensemble methods outperform C4.5. The experimental results also show that all five methods benefit from data preprocessing, including gene selection and discretization, in classification accuracy. In addition to comparing the average accuracies of ten-fold cross validation tests on seven data sets, we use two statistical tests to validate findings. We observe that Wilcoxon signed rank test is better than sign test for such purpose.
机译:为了响应DNA微阵列技术的快速发展,已经将许多分类方法用于微阵列分类。支持向量机,决策树,装袋,增强和随机森林是常用的方法。在本文中,我们对七个微阵列癌症数据集进行了LibSVM,C4.5,BaggingC4.5,AdaBoostingC4.5和Random Forest的实验比较。实验结果表明,所有集成方法均优于C4.5。实验结果还表明,所有五种方法均受益于数据预处理,包括基因选择和离散化,从而提高了分类准确性。除了在七个数据集上比较十倍交叉验证测试的平均准确性外,我们还使用两个统计测试来验证结果。我们观察到,Wilcoxon签名秩检验优于为此目的的符号检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号