首页> 外文OA文献 >Local moving least square - one-dimensional IRBFN technique: part 1 - natural convection flows in concentric and eccentric annuli
【2h】

Local moving least square - one-dimensional IRBFN technique: part 1 - natural convection flows in concentric and eccentric annuli

机译:局部最小二乘法-一维IRBFN技术:第1部分-同心和偏心环空中的自然对流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, natural convection flows in concentric and eccentric annuli are studied using a new numerical method, namely local moving least square-one dimensional integrated radial basis function networks (LMLS-1D-IRBFN). The partition of unity method is used to incorporate the moving least square (MLS) and one dimensional-integrated radial basis function (1D-IRBFN) techniques in an approach that leads to sparse system matrices and offers a high level of accuracy as in the case of 1D-IRBFN method. The present method possesses a Kronecker-Delta function property which helps impose the essential boundary condition in an exact manner. The method is first verified by the solution of the two-dimensional Poisson equation in a square domain with a circular hole, then applied to natural convection flow problems. Numerical results obtained are in good agreement with the exact solution and other published results in the literature.
机译:本文利用一种新的数值方法,即局部移动最小二乘一维综合径向基函数网络(LMLS-1D-IRBFN),研究了同心和偏心环空中的自然对流。单位划分方法用于合并移动最小二乘(MLS)和一维积分径向基函数(1D-IRBFN)技术,这种方法可导致系统矩阵稀疏并提供高水平的精度(在这种情况下)一维IRBFN方法。本方法具有克罗内克-德尔塔函数性质,该性质有助于以精确的方式施加基本边界条件。该方法首先通过在带有圆孔的正方形区域中二维泊松方程的解中得到验证,然后应用于自然对流问题。获得的数值结果与精确解和文献中其他已发表的结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号