首页> 外文OA文献 >Analyse du couvert nival à l'aide de données radar polarimétriques multifréquences et des mesures terrain de la campagne CLPX (cold-land processes field experiments)
【2h】

Analyse du couvert nival à l'aide de données radar polarimétriques multifréquences et des mesures terrain de la campagne CLPX (cold-land processes field experiments)

机译:使用多频极化雷达数据和冷地过程野外实验(CLPX)活动的野外测量来分析积雪

摘要

In this research, the characterization of snow cover is made from data collected in September, February and March of 2002 and 2003, during Cold-land Processes Field Experiments project of the NASA. These data include snow and forests characteristic measurements, meteorological conditions, digital elevation model (DEM) and polarimetric multifrequency SAR data (C, L and P bands) acquired from AIRSAR-POLSAR airborne sensor. These data will be used to analyze multifrequency polarimetric techniques to characterize snow cover over forested areas (open area, sparse coniferous forest, and dense coniferous forest). Different techniques have been developed to detect wet snow over different forested areas. The methodology of wet snow detection developed by Rott and Nagler (1995) is first analyzed. The best result is obtained in HH polarization (13% for the sparse coniferous forest site and 25% for the dense coniferous forest site). C-band data in circular polarizations improves these results, but the errors remain high (22% for the sparse coniferous forest site and 13% for the dense coniferous forest site). The use of [sigma][omicronn] ratio in dB [sigma][omicronn][subscript LHH] /[sigma][omicronn][subscript CHH], [sigma][omicronn][subscript LHV]/[sigma][omicronn] [subscript CHH], [sigma][omicronn][subscript LHV] /[sigma][omicronn][subscript CHV] and [sigma][omicronn][subscript LVV] /[sigma][omicronn][subscript CHH] allows to detect wet snow ([less-than or equal to] 13% errors) for both the open area and the dense coniferous forest sites. However, with this technique, higher errors ([greater-than or equal to] 16%) are obtained for the sparse coniferous forest site. The analysis of polarimetric signatures in the three bands shows that their shapes vary according to snow conditions (wet or dry) and forest densities. The pedestal height of polarimetric signatures in P band allows to apply a thresholding approach to discriminate between snow conditions (wet or dry). The error matrix generated from polarimetric signature techniques applied to snow pit measurements shows error higher than 6%. For the characterization of snow condition, target decomposition theorems show promising results. For the three bands, the Freeman-Durden and Cloude-Pottier decompositions allow to understand scattering mechanisms of snow-covered-forested areas. Also, a thresholding approach applied to volume scattering power of the Freeman-Durden decomposition in C band as well as to entropy parameter together with angle [alpha] value of Cloude-Pottier decomposition shows abilities to detect wet snow over forested areas. The technique using the volume scattered power shows detection errors higher than 16%. No classification error is obtained in the error matrix generated from entropy values over the snow pits. The analysis of backscattering coefficients as a function of forest density (open area, sparse coniferous forest and dense coniferous forest) shows variations in the signal as a function of frequency, polarization, density and forest structures as well as with ground conditions (snow-free, dry snow, wet snow). Three radar vegetation indexes (IVR, IVRD[subscript HH] and IVRD[subscript VV]) are analyzed. The IVR index in C and L bands, as well as the IVRD[subscript VV] index in L band are sensitive to forest density. The volume scattered power of the Freeman-Durden decomposition also allows to characterize forest density in C, L and P bands.In order to partially reduce the effect of forested area on the backscattering of a snow cover, image difference between the C-band backscattering coefficient (HH polarization) and the C-band volume scattered power in wet snow condition is performed. The error matrix generated over the snow pit shows that a threshold of 1.5 dB applied to the image difference leads to errors less than 6%. The obtained results clearly show the utility of multifrequency, multipolarisation and polarimetric SAR data for wet snow detection over different forested areas.
机译:在这项研究中,根据2002年和2003年9月,2月和3月在NASA的冷陆过程现场实验项目中收集的数据对积雪进行了表征。这些数据包括从AIRSAR-POLSAR机载传感器获取的雪和森林特征测量,气象条件,数字高程模型(DEM)和极化多频SAR数据(C,L和P波段)。这些数据将用于分析多频极化技术,以表征森林地区(空旷地区,针叶林稀疏和针叶林密布)的积雪。已经开发出不同的技术来检测不同森林地区的湿雪。首先分析了由Rott和Nagler(1995)开发的湿雪探测方法。 HH极化效果最好(稀疏的针叶林站点为13%,密集的针叶林站点为25%)。圆极化的C波段数据可以改善这些结果,但误差仍然很高(对于稀疏的针叶林站点为22%,对于密集的针叶林站点为13%)。 σ[μm]比以dB为单位σ[μm] [下标LHH] /σ[μm] [下标CHH],σ[μm] [下标LHV] /σ[μm] ] [下标CHH],σ[微米] [下标LHV] /σ[微米] [下标LVV]和σ[微米] [下标LVV] /σ[微米] [下标CHH]允许可以在开放区域和茂密的针叶林站点中检测湿雪(误差小于或等于13%)。但是,使用这种技术,对于稀疏的针叶林林地,可获得更高的误差(大于或等于16%)。对这三个波段的极化特征进行分析表明,它们的形状根据雪况(潮湿或干燥)和森林密度而变化。 P波段中极化特征的基座高度允许应用阈值方法来区分雪况(湿润或干燥)。由应用于雪坑测量的极化特征技术生成的误差矩阵显示出高于6%的误差。对于雪况的表征,目标分解定理显示出可喜的结果。对于这三个波段,Freeman-Durden和Cloude-Pottier分解可以理解积雪覆盖的森林地区的散射机制。而且,应用于C带中的弗里曼-杜登分解的体积散射能力以及熵参数以及Cloude-Pottier分解的角度α值的阈值化方法显示了检测森林区域上的湿雪的能力。使用体积分散功率的技术显示出高于16%的检测误差。在由雪坑上的熵值生成的误差矩阵中未获得分类误差。对背向散射系数作为森林密度(空旷地区,疏松针叶林和茂密针叶林)的函数进行分析,显示信号随频率,极化,密度和森林结构以及地面条件(无雪)的变化,干雪,湿雪)。分析了三种雷达植被指数(IVR,IVRD [下标HH]和IVRD [下标VV])。 C和L波段的IVR指数以及L波段的IVRD [下标VV]指数对森林密度敏感。 Freeman-Durden分解的体积分散能力还可以表征C,L和P波段的森林密度。为了部分减少林区对积雪反向散射的影响,C波段反向散射之间的图像差异在湿雪条件下进行系数(HH极化)和C波段体积散射功率的计算。在雪坑上生成的误差矩阵表明,将1.5 dB的阈值应用于图像差异会导致误差小于6%。获得的结果清楚地表明了多频,多极化和极化SAR数据在不同林区的湿雪检测中的实用性。

著录项

  • 作者

    Trudel Mélanie;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 fre
  • 中图分类
  • 入库时间 2022-08-20 20:30:06

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号