首页> 外文OA文献 >Nouvelles méthodes de dimensionnement à la capacité pour la conception parasismique de murs ductiles en béton armé
【2h】

Nouvelles méthodes de dimensionnement à la capacité pour la conception parasismique de murs ductiles en béton armé

机译:延性钢筋混凝土墙抗震设计的新的容量标注方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to produce economical seismic designs, the modern building codes allow reducing seismic design forces if the seismic force resisting system (SFRS) of a building is designed to develop an identified mechanism of inelastic lateral response. The capacity design aims to ensure that the inelastic mechanism develops as intended and no undesirable failure modes occur. Since the 1984 edition, this design approach is implemented in the Canadian Standards Association (CSA) standard A23.3 for seismic design of ductile reinforced concrete (RC) shear walls with the objectives of providing sufficient flexural and shear strength to confine the mechanism to the identified plastic hinges and ensure a flexure-governed inelastic lateral response of the walls. For a single regular wall, the implemented capacity design requirements assume a lateral deformation of the wall in its fundamental lateral mode of vibration, and hence aim to constrain the inelastic mechanism at the expected base plastic hinge. This design is referred to as single plastic-hinge (SPH) design. Despite these requirements, CSA standard A23.3 did not prescribe, prior to the 2004 edition, any methods for determining capacity design envelopes for flexural and shear strength design of ductile RC shear walls over their height. Only its Commentary recommended such methods. However, various studies suggested, mainly for cantilever walls, that the application of these methods could result in multistorey wall designs experiencing the formation of unintended plastic hinges at the upper storeys and a high potential of undesirable shear failure, principally at the wall base, jeopardizing the intended ductile flexural response of the wall. These design issues result from an underestimation of dynamic amplification due to lateral modes of vibration higher than the fundamental lateral mode. The 2004 CSA standard A23.3 now prescribes capacity design methods intending in part to address these design issues. Although these methods have not been assessed yet, their formulation appears deficient in accounting for the higher mode amplification effects. In this regard, this research project proposes for CSA standard A23.3 new capacity design methods, considering these effects, for a SPH design of regular ductile RC cantilever walls used as SFRS for multistorey buildings. In order to achieve this objective, first a seismic performance assessment of a realistic ductile shear wall system designed according to the 2004 CSA standard A23.3 is carried out to assess the prescribed capacity design methods. Secondly, an extensive parametric study based on sophisticated inelastic dynamic simulations is conducted to investigate the influence of various parameters on the higher mode amplification effects, and hence on the seismic force demand, in regular ductile RC cantilever walls designed with the 2004 CSA standard A23.3. Thirdly, a review of various capacity design methods proposed in the current literature and recommended by design codes for a SPH design is performed. From the outcomes of this review and the parametric study, new capacity design methods are proposed and a discussion on the limitations of these methods and on their applicability to various wall systems is presented.
机译:为了产生经济的抗震设计,如果将建筑物的抗震系统(SFRS)设计为开发确定的无弹性横向响应机制,则现代建筑规范允许降低抗震设计力。容量设计旨在确保非弹性机制按预期发展,并且不会发生不希望的破坏模式。自1984年版起,这种设计方法已在加拿大标准协会(CSA)标准A23.3中实施,用于可塑性钢筋混凝土(RC)剪力墙的抗震设计,目的是提供足够的抗弯强度和抗剪强度,以将机制限制在可以识别塑料铰链,并确保墙体受到挠曲控制的无弹性横向响应。对于单个规则的墙,已实现的容量设计要求假设墙在其基本的横向振动模式下发生侧向变形,因此旨在将非弹性机制限制在预期的基础塑料铰链处。此设计称为单塑料铰链(SPH)设计。尽管有这些要求,但在2004年版之前,CSA标准A23.3并未规定任何方法来确定可塑性RC剪力墙在其高度上的抗弯和抗剪强度设计的能力设计范围。只有其评注推荐了这种方法。然而,主要针对悬臂墙的各种研究表明,这些方法的应用可能导致多层墙设计在上层经历意外的塑料铰链形成,并且有很大的潜在不良剪力破坏的可能性,主要是在墙基处,从而危及了安全性。壁的预期延性挠曲响应。这些设计问题是由于对振动的横向模式高于基本横向模式而对动态放大系数的低估所致。现在,2004 CSA标准A23.3规定了容量设计方法,部分旨在解决这些设计问题。尽管尚未评估这些方法,但它们的配方似乎不足以说明较高的模式放大效果。在这方面,本研究项目针对CSA标准A23.3,提出了考虑到这些影响的新的容量设计方法,以用于用作多层建筑的SFRS的常规延性RC悬臂墙的SPH设计。为了实现此目标,首先对根据2004 CSA标准A23.3设计的实际延性剪力墙系统进行抗震性能评估,以评估规定的容量设计方法。其次,在以2004 CSA标准A23设计的常规延性RC悬臂墙中,基于复杂的非弹性动态模拟进行了广泛的参数研究,以研究各种参数对较高模放大效果的影响,从而对地震力需求产生影响。 3。第三,对当前文献中提出并由SPH设计的设计规范推荐的各种容量设计方法进行了回顾。从这次审查和参数研究的结果来看,提出了一种新的容量设计方法,并讨论了这些方法的局限性以及它们在各种墙壁系统中的适用性。

著录项

  • 作者

    Boivin Yannick;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号