首页> 外文OA文献 >Parallel methods for solving stochastic optimal control problems: control of drinking water networks
【2h】

Parallel methods for solving stochastic optimal control problems: control of drinking water networks

机译:解决随机最优控制问题的并行方法:饮用水网络的控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is concerned with the development ofudoptimisation methods to solve stochastic Model PredictiveudControl (MPC) problem and employ them inudthe management of DrinkingWater Networks (DWNs).udDWNs are large-scale, complex both in topology anduddynamics, energy-intensive systems subjected to irregularuddemands. Managing these networks play audcrucial role in the economic sustainability of urbanudcities. The main challenge associated with such infrastructuresudis to minimise the energy required forudpumping water while simultaneously maintaininguduninterrupted water supply. State-of-the-art controludmethodologies as well as the current engineeringudpractices use predictive models to forecast upcomingudwater demands but do not take into considerationudthe inevitable forecasting error. This way, theudwater network is operated in a deterministic fashionuddisregarding its inherent stochastic behaviourudwhich accrues from the volatility of water demandudand, often, electricity prices. In this thesis, we addressudtwo challenges namely: optimisation methodsudfor solving stochastic MPC problems and closedloopudfeedback control for the management of drinkingudwater networks.udMPC is an advanced control technology that copes with complex control problem by repeatedly solvinguda finite horizon constrained optimal control problem;uduses only the first decision as input and discardsudthe rest of the sequence. This methodologyuddecides the control action based on present state ofudthe system and thus provides an implicit feedbackudto the system. Instead of historical demand profile,udtime-series models were developed to forecast theudfuture water demand. The economic and the socialudaspects involved in operation of the DWN wereudcaptured in a cost function. Now the MPC controllerudcombined with online forecaster minimise theudcost function across a prediction horizon of 1 dayudwith sampling time equal to 1 hour and thus theudclosed-loop strategy for DWN management is devised.udThe forecasts are just nominal demands and differudfrom the actual demands. There exist several approachesudwhen it comes to working with uncertainudforecasts: (i) to assume that forecast errors are negligibleudand disregard them, (ii) to assume knowledgeudof their worst-case values (maximum errors), (iii)udto assume knowledge of probabilistic information.udThese three approaches lead to the three principaludflavours of MPC: the certainty-equivalent (CE), theudworst-case robust and the stochastic MPC. CE-MPCudis simple but not realistic (because the errors are notudnegligible), worst-case MPC is more meaningful butudit is too conservative (because it is highly improbableudthat the errors admit their worst-case values) and then we have stochastic MPC which is the approachudpursued in this thesis.udA stochastic MPC allows a systematic frameworkudas trade-off performance against constraint violationudby modelling the uncertainty as stochastic processudand quantifying its influence. However, thisudformulation is an infinite dimensional optimisationudproblem and its corresponding discrete approximationudis deemed to be a large-scale problem with millionsudof decision variables. Therefore, the applicabilityudof stochastic MPC in control applications isudlimited due to the unavailability of algorithms thatudcan solve them efficiently and within the samplingudtime of the controlled system.udHere we developed optimisation algorithms that solveudstochastic MPC problem by exploiting their structureudand using parallelisation. These algorithms areud(i) accelerated proximal gradient algorithm also knownudas forward-backward splitting and (ii) LBFGSudmethod for forward-backward envelope (FBE) function.udBoth these algorithms employ decompositionudto solve the Fenchel dual and make them suitableudfor parallel implementation. Graphics processingudunits (GPUs) are capable of perform parallel computationudand are therefore perfect hardware to solveudthe stochastic MPC problem with the acceleratedudproximal gradient method.udThe water network of the city Barcelona is consideredudto study the validity of the proposed algorithm.udThe GPU implementation is found to be 10 times faster than commercial solvers like Gurobi runningudin multi-core environment and made the problemudcomputationally tractable in the sampling time. Theudefficiency of the stochastic MPC to manage theDWNudis quantified in terms of key performance indicatorsudlike economic utility, network utility and quality ofudservice.udThe forward-backward splitting is a first-order methodudand has slow convergence for ill-conditionedudproblems. We constructed a continuously differentiableudreal-valued forward-backward envelope functionudthat has the same set of minimisers as the actualudproblem. Then we use quasi-Newton method,udin particular LBFGS method, that utilises secondorderudinformation to solve the FBE. The computationsudwith this algorithm are also parallelisable andudit demonstrated fast convergence compared to accelerateduddual proximal gradient algorithm.
机译:本文致力于解决随机模型预测 udControl(MPC)问题并将其应用于饮用水网络(DWN)的管理中的 udoptimization方法的开发。 udDWN是大规模的,拓扑结构和 uddynamics复杂的,能源密集型系统受到不规则需求的影响。管理这些网络在城市城市的经济可持续性中起着至关重要的作用。与这样的基础设施有关的主要挑战是在使水供应保持不间断的同时,最大限度地减少水的消耗。最新的控制方法论以及当前的工程实践均使用预测模型来预测即将来临的需水量,但并未考虑不可避免的预测误差。这样, udwater网络以一种确定性的方式运行,而不考虑其固有的随机行为 ud,这是由需水量的波动 udand(通常是电价)引起的。在本文中,我们解决了两个难题,即优化方法,解决随机MPC问题的ud和用于饮用水/污水管网管理的闭环/ udfeedback控制。 udMPC是一种先进的控制技术,通过反复解决来解决复杂的控制问题。 •有限水平约束的最优控制问题; 仅将第一个决策用作输入,而将其余的序列丢弃。该方法根据系统的当前状态来决定控制动作,从而向系统提供隐式反馈。 udtime系列模型代替了历史需求概况,而开发了 udtime系列模型来预测 uuture未来的用水需求。 DWN的运营涉及的经济和社会方面都以成本函数来描述。现在,MPC控制器与在线预测程序结合使用,将 udcost函数在1天的预测范围内最小化 udud,采样时间等于1小时,因此,设计了 DWN管理的闭环策略。 ud预测只是名义需求与实际需求有所不同。在处理不确定性 udforecasts时,有几种方法:(i)假定预测误差可以忽略不计 ud而忽略它们,(ii)假设 udof其最坏情况值(最大误差),(iii } ud假定概率信息知识。 ud这三种方法导致MPC的三个主要不利因素:确定性当量(CE),最坏情况下的鲁棒性和随机MPC。 CE-MPC简单但不切实际(因为错误不可忽略),最坏情况的MPC更有意义,但udit过于保守(因为错误不太可能接受最坏情况的值)然后,我们采用了随机MPC,这是本文中所采用的方法。 udA随机MPC允许系统化的框架, u003c u003b u003b u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003c u003b u003c u003c u003b但是,此 udformulation是一个无限维优化 udproblem,其对应的离散逼近 udis被认为是具有数百万个 udof决策变量的大规模问题。因此,由于在控制系统的采样/时间内,无法有效地解决随机MPC的算法,随机MPC在控制应用程序中的适用性受到了限制。利用并行化利用其结构 udand。这些算法是 ud(i)加速近端梯度算法(也称为uuda前向后向拆分)和(ii)LBFGS udmethod用于前向后向包络(FBE)函数。 ud这两种算法均采用分解 ud来求解Fenchel对偶和使它们适合并行执行。图形处理 udunit(GPU)能够执行并行计算 ud,因此是用加速 udx近邻梯度法解决 udp随机MPC问题的理想硬件。 ud考虑了巴塞罗那市的自来水网络 ud,以研究 ud发现GPU的实现速度比诸如Gurobi运行 udin多核环境之类的商业求解器快10倍,并且使问题在采样时间上可以轻易解决。随机MPC管理DWN的效率低下,在关键绩效指标上的量化类似经济效用,网络效用和udservice的质量。 ud前向-后向拆分是一阶方法 udand收敛缓慢病情/问题。我们构造了一个连续可微分 udreal值的前向后包络函数 ud,该函数具有与实际 udproblem相同的最小集。然后我们使用准牛顿法,特别是LBFGS法,它利用二阶 udinformation解决FBE。与加速双近端梯度算法相比,该算法的计算也是可并行的,并且证明了快速收敛。

著录项

  • 作者

    Sampathirao Ajay Kumar;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号