首页> 外文OA文献 >Large scale parallel state space search utilizing graphics processing units and solid state disks
【2h】

Large scale parallel state space search utilizing graphics processing units and solid state disks

机译:利用图形处理单元和固态磁盘的大规模并行状态空间搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The evolution of science is a double-track process composed of theoretical insights onthe one hand and practical inventions on the other one. While in most cases new theoretical insights motivate hardware developers to produce systems following the theory,in some cases the shown hardware solutions force theoretical research to forecast theresults to expect.Progress in computer science rely on two aspects, processing information and storing it. Improving one side without touching the other will evidently impose new problemswithout producing a real alternative solution to the problem. While decreasingthe time to solve a challenge may provide a solution to long term problems it will failin solving problems which require much storage. In contrast, increasing the availableamount of space for information storage will definitively allow harder problems to besolved by offering enough time.This work studies two recent developments in the hardware to utilize them in thedomain of graph searching. The trend to discontinue information storage on magneticdisks and use electronic media instead and the tendency to parallelize the computationto speed up information processing are analyzed.Storing information on rotating magnetic disk has become the standard way sincea couple of years and has reached a point where the storage capacity can be seen asinfinite due to the possibility of adding new drives instantly with low costs. However,while the possible storage capacity increases every year, the transferring speed doesnot. At the beginning of this work, solid state media appeared on the market, slowlysuppressing hard disks in speed demanding applications. Today, when finishing thiswork solid state drives are replacing magnetic disks in mobile computing, and computingcenters use them as caching media to increase information retrieving speed.The reason is the huge advantage in random access where the speed does not drop sosignificantly as with magnetic drives.While storing and retrieving huge amounts of information is one side of the medal,the other one is the processing speed. Here the trend from increasing the clock frequencyof single processors stagnated in 2006 and the manufacturers started to combinemultiple cores in one processor. While a CPU is a general purpose processor themanufacturers of graphics processing units (GPUs) encounter the challenge to performthe same computation for a large number of image points. Here, a parallelization offershuge advantages, so modern graphics cards have evolved to highly parallel computinginstances with several hundreds of cores. The challenge is to utilize these processorsin other domains than graphics processing.One of the vastly used tasks in computer science is search. Not only disciplines withan obvious search but also in software testing searching a graph is the crucial aspect.Strategies which enable to examine larger graphs, be it by reducing the number ofconsidered nodes or by increasing the searching speed, have to be developed to battlethe rising challenges. This work enhances searching in multiple scientific domainslike explicit state Model Checking, Action Planning, Game Solving and ProbabilisticModel Checking proposing strategies to find solutions for the search problems.Providing an universal search strategy which can be used in all environments toutilize solid state media and graphics processing units is not possible due to the heterogeneous aspects of the domains. Thus, this work presents a tool kit of strategies tiedtogether in an universal three stage strategy. In the first stage the edges leaving a nodeare determined, in the second stage the algorithm follows the edges to generate nodes.The duplicate detection in stage three compares all newly generated nodes to existingonce and avoids multiple expansions.For each stage at least two strategies are proposed and decision hints are given tosimplify the selection of the proper strategy. After describing the strategies the kit isevaluated in four domains explaining the choice for the strategy, evaluating its outcomeand giving future clues on the topic.
机译:科学的发展是一个双重过程,一方面是理论上的洞察力,另一方面是实用的发明。虽然在大多数情况下,新的理论见解可以激励硬件开发人员按照该理论来生产系统,但在某些情况下,所示的硬件解决方案迫使理论研究对结果进行预测。计算机科学的进展依赖于两个方面,即信息处理和存储。改善一侧而不接触另一侧显然会带来新的问题,而不会为该问题提供真正的替代解决方案。虽然减少解决挑战的时间可能会为长期问题提供解决方案,但它将无法解决需要大量存储的问题。相反,增加信息存储的可用空间将通过提供足够的时间来最终解决较难的问题。这项工作研究了硬件的两个最新发展,以在图形搜索领域中利用它们。分析了停止在磁盘上存储信息并改用电子介质的趋势,以及并行化计算以加快信息处理的趋势。旋转磁盘上存储信息已成为标准方法,这已经有两年了,并且已经达到了存储的目的。由于可以低成本快速添加新驱动器,因此可以将容量视为无限。但是,尽管可能的存储容量逐年增加,但传输速度却没有增加。在这项工作的开始,固态介质就出现在市场上,在对速度有严格要求的应用程序中,硬盘逐渐受到抑制。如今,当完成这项工作时,固态驱动器正在取代移动计算中的磁盘,并且计算中心将其用作缓存介质以提高信息检索速度。原因是随机访问具有巨大优势,因为随机访问的速度不会像磁驱动器那样显着下降。在存储和检索大量信息时,奖章的一面是另一方面,而处理速度则是另一面。 2006年,单处理器时钟频率增加的趋势停滞了,制造商开始在一个处理器中组合多个内核。尽管CPU是通用处理器,但是图形处理单元(GPU)的制造商面临着对大量图像点执行相同计算的挑战。在这里,并行化提供了巨大的优势,因此现代图形卡已经发展成为具有数百个内核的高度并行计算实例。挑战是在图形处理之外的其他领域中利用这些处理器。计算机科学中广泛使用的任务之一是搜索。不仅要进行明显搜索的学科,而且要在软件测试中搜索图形都是至关重要的方面。必须开发能够检查较大图形的策略,无论是通过减少考虑的节点数量还是通过提高搜索速度,都可以应对不断增长的挑战。这项工作增强了在多个科学领域的搜索能力,例如显式状态模型检查,动作计划,游戏解决和概率模型检查提议策略,以找到解决问题的解决方案。提供了可在所有环境中使用的通用搜索策略,以利用固态媒体和图形处理由于域的异构方面,因此不可能使用单位。因此,这项工作提出了一种在通用的三阶段策略中捆绑在一起的策略工具套件。第一阶段确定离开节点的边缘,第二阶段算法遵循边缘以生成节点。第三阶段的重复检测将所有新生成的节点与现有节点进行一次比较,避免多次扩展。对于每个阶段,至少有两种策略是提出建议和决策提示,以简化适当策略的选择。在描述了策略之后,将在四个方面对工具包进行评估,以说明策略的选择,评估其结果并提供有关该主题的未来线索。

著录项

  • 作者

    Sulewski Damian;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号