首页> 外文OA文献 >Random finite set filters for superpositional sensors
【2h】

Random finite set filters for superpositional sensors

机译:叠加传感器的随机有限集滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multi–object filtering problem is a generalization of the well–known single– object filtering problem. In essence, multi–object filtering is concerned with the joint estimation of the unknown and time–varying number of objects and the state of each of these objects. The filtering problem becomes particular challenging when the number of objects cannot be inferred from the collected observations and when no association between an observation and an object is possible. A rather new and promising approach to multi–object filtering is based on the principles of finite set statistics (FISST). FISST is a methodology, originally proposed by R. Mahler, that allows the formulation of the multi–object filtering problem in a mathematical rigorous way. One of the main building blocks of this methodology are random finite sets (RFSs), which are essentially finite set (FS) – valued random variables (RVs). Hence, a RFS is a RV which is not only random in the values of each element but also random in the number of elements of the FS. Under the premise that the observations are generated by detection–type sensors, many practical and efficient multi–object filters have been proposed. In general, detection–type sensors are assumed to generate observations that either originate from a single object or are false alarms. While this is a reasonable assumption in many multi–object filtering scenarios, this is not always the case. Central to this thesis is another type of sensors, the superposition (SPS)–type sensors. Those types of sensors are assumed to generate only one single observation that encapsulates the information about all the objects in the monitored area. More specifically, a single SPS observation is comprised out of the additive contribution of all the observations which would be generated by each object individually. In this thesis multi–object filters for SPS–type sensors are derived in a formal mathematical manner using the methodology of FISST. The first key contribution is a formulation of a SPS sensor model that, alongside errors like sensor noise, accounts for the fact that an object might not be visible to a sensor due to being outside of the sensor’s restricted field of view (FOV) or because it is occluded by obstacles. The second key contribution is the derivation of multi–object Bayes filter for SPS sensors that incorporates the aforementioned SPS sensor model. The third key contribution is the formulation of a filter variant that incorporates a multi–object multi–Bernoulli distribution as underlying multi–object state distribution, thus providing a multi–object multi–Bernoulli (MeMBer) filter variant for SPS–type sensors. As the stated variant turns out not to be conjugate, two approximations to the exact solution are given. The fourth key contribution is the derivation of computationally tractable implementations of the SPS MeMBer filters.
机译:多对象过滤问题是众所周知的单对象过滤问题的概括。从本质上讲,多对象过滤与对未知和随时间变化的对象数量以及每个对象的状态的联合估计有关。当无法从收集的观测值中推断出对象的数量并且观测值与对象之间没有关联时,过滤问题将变得尤为棘手。一种用于多对象过滤的相当新颖且有希望的方法是基于有限集统计量(FISST)的原理。 FISST是最初由R. Mahler提出的一种方法,它允许以数学上严格的方式来表述多对象过滤问题。该方法的主要组成部分之一是随机有限集(RFS),它本质上是有限集(FS)–值随机变量(RVs)。因此,RFS是RV,其不仅在每个元素的值上是随机的,而且在FS的元素的数量上是随机的。在观测值由检测型传感器产生的前提下,提出了许多实用而有效的多目标滤波器。通常,假定检测类型的传感器产生的观察结果要么源自单个对象,要么是虚假警报。尽管在许多多对象过滤方案中这是一个合理的假设,但并非总是如此。本文的中心是另一种类型的传感器,即叠加(SPS)型传感器。假定这些类型的传感器仅生成一个单一观测值,该观测值封装了有关受监视区域中所有对象的信息。更具体地说,单个SPS观测值是由每个对象单独生成的所有观测值的累加贡献组成的。在本文中,使用FISST的方法以形式化数学方式导出了用于SPS型传感器的多目标滤波器。第一个主要贡献是SPS传感器模型的制定,与诸如传感器噪声之类的错误一起,还说明了以下事实:由于在传感器的受限视场(FOV)之外或由于传感器外的原因,物体可能对传感器不可见它被障碍所遮挡。第二个关键贡献是派生了适用于SPS传感器的多对象贝叶斯滤波器,该滤波器结合了上述SPS传感器模型。第三个主要贡献是滤波器变体的制定,该变体将多对象多伯努利分布作为基础的多对象状态分布,从而为SPS型传感器提供了多对象多伯努利(MeMBer)滤波器变体。由于陈述的变体证明不是共轭的,因此给出了精确解的两个近似值。第四个关键贡献是SPS MeMBer过滤器的计算可简化实现的派生。

著录项

  • 作者

    Hauschildt Daniel;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号