首页> 外文OA文献 >Heterogeneous computing architecture for fast detection of SNP-SNP interactions
【2h】

Heterogeneous computing architecture for fast detection of SNP-SNP interactions

机译:用于快速检测SNP-SNP相互作用的异构计算架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort.udGeneral purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
机译:典型的全基因组关联研究(GWAS)中的数据范围对基因-基因相互作用发现的软件工具提出了相当大的计算挑战。对数十万至数百万个单核苷酸多态性(SNP)之间所有相互作用的详尽评估可能需要数周甚至数月的计算。现代图形处理单元(GPU)和许多集成核心(MIC)协处理器中的大规模并行硬件可以大大缩短运行时间。尽管已经对生物信息学中基于GPU的实现的实用性进行了充分的研究,但MIC体系结构只是在最近才被引入,它可能会提供许多尚待探索和测试的比较优势。我们已经开发出用于SNP-SNP交互发现的异构GPU和Intel MIC加速软件模块,以取代基于交互式Web的数据探索程序SNPsyn中的以前的单线程计算核心。我们报告了这两种现代的大规模并行体系结构及其软件环境之间的差异。与单线程CPU实现相比,它们的效用导致执行时间缩短了一个数量级。在单个Nvidia Tesla K20上实现GPU的运行速度是基于MIC架构的至强融核P5110协处理器的两倍,但还需要更多的编程工作。 ud通用GPU是具有大量计算能力的成熟平台,能够应对内在的并行问题,但可以证明对程序员的要求很高。另一方面,新的MIC架构尽管缺乏性能,却减少了编程工作,并使其具有适用于更广泛问题的更通用的架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号