首页> 外文OA文献 >Modeling the Effects of Cu content and deformationudvariables on the high-temperature flow behavior ofuddilute Al-Fe-Si alloys using an artificial neural network
【2h】

Modeling the Effects of Cu content and deformationudvariables on the high-temperature flow behavior ofuddilute Al-Fe-Si alloys using an artificial neural network

机译:模拟铜含量和变形的影响 ud ud高温流动行为的变量使用人工神经网络稀释Al-Fe-Si合金

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different températures (400 oC–550 oC) and strain rates (0.01–10 s -1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to studyudthe relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature,udstrain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.
机译:通过在不同温度(400 oC–550 oC)和应变速率(0.01–10 s)下进行的单轴压缩试验,研究了不同含量的Cu(0.002-0.31 wt%)的Al-0.12Fe-0.1Si合金的热变形行为。 -1)。结果表明,在所有变形条件下,由于溶质拖曳效应,流动应力随着变形温度的升高和应变速率的降低而减小,而流动应力随Cu含量的增加而增大。在实验数据的基础上,建立了人工神经网络模型,研究化学成分,变形变量与高温流动行为之间的关系。这项研究建立了一个三层前馈反向传播人工神经网络,在隐藏层中具有20个神经元。输入参数为Cu含量,温度,应变速率和应变,而流变应力为输出。使用K折交叉验证方法评估了所提出模型的性能。结果表明,所开发模型具有出色的泛化能力。敏感性分析表明,应变速率是最重要的参数,而铜含量对流变应力的影响较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号