首页> 外文OA文献 >A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies
【2h】

A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies

机译:嵌入闭环控制系统的小脑神经病理模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
机译:小脑在感觉运动控制中起着至关重要的作用,小脑疾病损害了运动反应的适应性和学习能力。然而,在网络水平的改变和小脑功能障碍之间的联系仍然不清楚。原则上,这种理解将有利于开发嵌入小脑的显着神经元和塑性特性并在闭环下运行的人工系统。为了达到这个目的,我们利用了小脑的实际峰值计算模型来分析小脑损伤的网络相关性。修改模型以重现小脑皮层的三种不同损伤:(i)主要输出神经元(Purkinje细胞)缺失,(ii)主要小脑传入神经(苔藓纤维)病变,和(iii)损伤突触可塑性(长期抑郁)的主要机制。修改后的网络模型受到经典眨眼条件测试(Eye-Blink Classical Conditioning test)的挑战,这是一种用于评估小脑损伤的标准学习范例,其中将结果与在人或动物实验中获得的参考结果进行了比较。在所有情况下,该模型均再现了典型的病理部分和延迟条件,表明需要完整的小脑皮层功能来通过将获取的信息转移到小脑核来加速学习。有趣的是,取决于病变的类型,突触可塑性的重新分布和反应时机变化很大,从而产生特定的适应模式。因此,不仅当前的工作将小脑突波模型的泛化能力扩展到病理情况,而且还预测了神经元水平的变化如何在整个网络中分布,从而可用于推断在小脑病理中发生的小脑回路改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号