首页> 外文OA文献 >Finite element modeling of micro-orthogonal cutting process with dead metal cap
【2h】

Finite element modeling of micro-orthogonal cutting process with dead metal cap

机译:带死金属盖的微正交切削工艺的有限元建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dead metal cap plays an important role in the microcutting process because target material piled up on the tool–chip–udworkpiece interface can alter the cutting geometry. The target of this study is to model and simulate the microorthogonaludcutting process in the presence of dead metal cap in order to investigate the effects of this phenomenon onudthe micromachining process outputs (cutting force, thrust force and chip thickness) and stress distribution, equivalentudplastic strain and temperature inside the workpiece shear zones. For this purpose, the finite element method with explicituddynamic solution and adiabatic heating effect along with arbitrary Lagrangian–Eulerian approach is used. It is shownudthat the finite element models with current state-of-the-art assumptions cannot take into account the dead metal cap byuddefault. For this reason, dead metal cap is artificially introduced on the rounded tool edge in this study for carrying out audproper analysis. Several simulations with different dead metal cap geometries are performed and obtained results showudthat prediction of cutting force, thrust force and chip thickness are sensitive to the presence of dead metal cap and itsudgeometry. Micro-orthogonal cutting experiments are carried out on tubular AISI 1045 workpieces for validating andudinterpreting simulated results. The error between predicted and experimental data is calculated, and it is shown thatudsimulation performances can be improved by considering the dead metal cap into the process model. For example, it isudpossible to reduce the error to less than 5% in case of thrust force prediction. This study points out how the targetudmaterial’s Von Mises stress, equivalent plastic strain and temperature distribution are sensitive to any alteration of theudedge geometry due to the dead metal cap. The best dead metal cap configuration in terms of agreement with experimentsudis also the one introducing a more homogeneous distribution of these quantities along the shear plane.
机译:死角金属帽在微切削过程中起着重要作用,因为堆积在工具-切屑/工件表面上的目标材料会改变切削几何形状。这项研究的目标是在存在死金属盖的情况下建模和模拟微正交切削加工,以便研究该现象对切削加工输出(切削力,推力和切屑厚度)和应力分布的影响。 ,等效非塑性应变和工件剪切区内的温度。为此,使用了具有显式动态解决方案和绝热加热作用的有限元方法以及任意的拉格朗日-欧拉方法。显示 ud默认情况下具有当前最新假设的有限元模型无法考虑死金属帽。由于这个原因,在这项研究中,人为地将死金属盖人工引入到圆角的刀沿上,以进行正确的分析。进行了几种不同的死角金属盖几何形状的仿真,并获得的结果表明,切削力,推力和切屑厚度的预测对死角金属盖的存在及其预算很敏感。在管状AISI 1045工件上进行了微正交切削实验,以验证和解释模拟结果。计算了预测数据与实验数据之间的误差,结果表明,通过将死角金属帽考虑到过程模型中,可以提高模拟性能。例如,在推力预测的情况下,不可能将误差减小到5%以下。这项研究指出了目标 udmaterial的冯·米塞斯应力,等效塑性应变和温度分布如何对由于死金属帽而导致的 udedge几何形状的任何变化敏感。根据与实验的一致性,最佳的死金属盖配置还引入了这些量沿剪切平面的更均匀分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号