首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part B. Journal of engineering manufacture >Finite element modeling of micro-orthogonal cutting process with dead metal cap
【24h】

Finite element modeling of micro-orthogonal cutting process with dead metal cap

机译:死金属帽微正交切削过程的有限元建模

获取原文
获取原文并翻译 | 示例
           

摘要

Dead metal cap plays an important role in the microcutting process because target material piled up on the tool-chip-workpiece interface can alter the cutting geometry. The target of this study is to model and simulate the micro-orthogonal cutting process in the presence of dead metal cap in order to investigate the effects of this phenomenon on the micromachining process outputs (cutting force, thrust force and chip thickness) and stress distribution, equivalent plastic strain and temperature inside the workpiece shear zones. For this purpose, the finite element method with explicit dynamic solution and adiabatic heating effect along with arbitrary Lagrangian-Eulerian approach is used. It is shown that the finite element models with current state-of-the-art assumptions cannot take into account the dead metal cap by default. For this reason, dead metal cap is artificially introduced on the rounded tool edge in this study for carrying out a proper analysis. Several simulations with different dead metal cap geometries are performed and obtained results show that prediction of cutting force, thrust force and chip thickness are sensitive to the presence of dead metal cap and its geometry. Micro-orthogonal cutting experiments are carried out on tubular AISI 1045 workpieces for validating and interpreting simulated results. The error between predicted and experimental data is calculated, and it is shown that simulation performances can be improved by considering the dead metal cap into the process model. For example, it is possible to reduce the error to less than 5% in case of thrust force prediction. This study points out how the target material's Von Mises stress, equivalent plastic strain and temperature distribution are sensitive to any alteration of the edge geometry due to the dead metal cap. The best dead metal cap configuration in terms of agreement with experiments is also the one introducing a more homogeneous distribution of these quantities along the shear plane.
机译:死金属帽在微皮套过程中起着重要作用,因为堆积在工具芯片工件界面上的目标材料可以改变切割几何形状。本研究的目标是在死金属帽的存在下模拟和模拟微正交切削过程,以便研究这种现象对微机械加工过程输出(切割力,推力和芯片厚度)和应力分布的影响,等效塑料应变和工件剪切区内的温度。为此目的,使用具有明确动态解决方案和绝热加热效果的有限元方法以及任意拉格朗日 - 欧拉方法。结果表明,具有当前最先进的假设的有限元模型不能考虑默认情况下的死金属帽。因此,在本研究中的圆形工具边缘中,死金属盖在本研究中进行了适当的分析。进行多次模拟具有不同的死金金属帽几何形状,并获得结果表明,切割力,推力和芯片厚度的预测对死金属帽的存在和其几何形状敏感。微正交切割实验在管状AISI 1045工件上进行,用于验证和解释模拟结果。计算预测和实验数据之间的误差,并显示通过将死金属帽考虑到过程模型来改善模拟性能。例如,在推力预测的情况下,可以将误差降低至小于5%。本研究指出了目标材料的von误误,等效塑料应变和温度分布对由于死金属帽而对边缘几何形状的任何改变敏感。在与实验协议方面,最佳的死金金属帽配置也是沿着剪切平面引入这些数量的更均匀分布的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号