首页> 外文OA文献 >Social Network Opinion and Posts Mining for Community Preference Discovery
【2h】

Social Network Opinion and Posts Mining for Community Preference Discovery

机译:社区偏好发现的社交网络意见和帖子挖掘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The popularity of posts, topics, and opinions on social media websites and the influence ability of users can be discovered by analyzing the responses of users (e.g., likes/dislikes, comments, ratings). Existing web opinion mining systems such as OpinionMiner is based on opinion text similarity scoring of usersu27 review texts and product ratings to generate database table of features, functions and opinions mined through classification to identify arriving opinions as positive or negative on user-service networks or interest networks (e.g., Amazon.com). These systems are not directly applicable to user-user networks or friendship networks (e.g., Facebook.com) since they do not consider multiple posts on multiple products, usersu27 relationships (such as influence), and diverse posts and comments. In this thesis, we propose a new influence network (IN) generation algorithm (Opinion Based IN:OBIN) through opinion mining of friendship networks (like Facebook.com). OBIN mines opinions using extended OpinionMiner that considers multiple posts and relationships (influences) between users. Approach used includes frequent pattern mining algorithm for determining community (positive or negative) preferences for a given product as input to standard influence maximization algorithms like CELF for target marketing. Experiments and evaluations show the effectiveness of OBIN over CELF in large-scale friendship networks. KEYWORDS Influence Analysis, Recommendation, Ranking, Sentiment Classification, Large Scale Network, Social Network, Opinion Mining, Text Mining.
机译:社交媒体网站上帖子,主题和意见的受欢迎程度以及用户的影响能力可以通过分析用户的回复(例如,喜欢/不喜欢,评论,评分)来发现。现有的网络意见挖掘系统(例如OpinionMiner)基于用户的意见文本相似性评分评论文本和产品评分,以生成通过分类挖掘的特征,功能和意见的数据库表,以识别到达的意见在用户服务网络上是正面还是负面或兴趣网络(例如Amazon.com)。这些系统不能直接应用于用户-用户网络或友谊网络(例如,Facebook.com),因为它们不考虑多个产品上的多个帖子,用户关系(例如影响力)以及各种帖子和评论。本文通过对友谊网(如Facebook.com)的意见挖掘,提出了一种新的影响力网络生成算法(基于意见的IN:OBIN)。 OBIN使用扩展的OpinionMiner挖掘意见,该意见考虑了多个帖子以及用户之间的关系(影响)。所使用的方法包括频繁模式挖掘算法,用于确定给定产品的社区(正面或负面)偏好,作为对标准营销最大化算法(如CELF)的输入,以用于目标营销。实验和评估表明,在大规模友谊网络中,OBIN优于CELF。关键词影响分析,推荐,排名,情感分类,大规模网络,社交网络,观点挖掘,文本挖掘。

著录项

  • 作者

    Mumu Tamanna;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号