首页> 外文OA文献 >The Effect Of Direct Yaw Moment On Human Controlled Vehicle Systems
【2h】

The Effect Of Direct Yaw Moment On Human Controlled Vehicle Systems

机译:直接偏航力矩对人控车辆系统的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in computing technology have had a profound impact on the design and development of modern vehicle systems. These advances have provided the basis for virtual design and testing in simulated environments, as well as the development of active control systems capable of providing improved vehicle safety, efficiency, and performance. Continued developments in hybrid powertrains and on-board computing will provide for greater amounts of control, through the integration of larger numbers of actuators and more complex control schemes. The intention of this research is to investigate the effects of advanced vehicle dynamics controls on the human operated vehicle system. Hybrid electric vehicle systems incorporating multiple electric drive motors are capable of actively distributing drive and braking torque to the individual wheels of the vehicle. The modulation of these torques can be used to optimize or alter the dynamic response of the vehicle, through the application of a direct yaw moment. A control structure capable of determining and dynamically allocating appropriate control signals for over-actuated vehicle systems is proposed. A dynamic simulation of a virtual prototype BMW 330i is utilized to evaluate the effects of active drive torque vectoring on vehicle response. The effects of the proposed system on the human operator are also evaluated, through the use of driver model in-the-loop simulations. The results presented indicate the promising potential of direct yaw moment control in modulating the response of human operated vehicle systems. The interactions between the human driver model and control systems were shown to be favourable. The scientific contributions and implications of the research are detailed, including application of closed-loop simulation to engineering education. Conclusions on the efficacy of developed models, methodologies and systems are given. Finally, recommendations on potential improvements and future research regarding vehicle modelling and motion control are provided.
机译:计算技术的进步对现代车辆系统的设计和开发产生了深远的影响。这些进步为在模拟环境中进行虚拟设计和测试以及开发能够提供改进的车辆安全性,效率和性能的主动控制系统提供了基础。混合动力总成和车载计算的持续发展将通过集成更多数量的执行器和更复杂的控制方案来提供更大的控制量。这项研究的目的是研究先进的车辆动力学控制对人类操作的车辆系统的影响。结合有多个电动马达的混合动力电动汽车系统能够主动地将驱动和制动扭矩分配给车辆的各个车轮。通过施加直接横摆力矩,这些扭矩的调制可用于优化或改变车辆的动态响应。提出了一种能够确定和动态分配用于过度致动的车辆系统的适当控制信号的控制结构。虚拟原型BMW 330i的动态仿真用于评估主动驱动扭矩矢量对车辆响应的影响。通过使用驾驶员模型在环仿真,还可以评估提议的系统对操作员的影响。提出的结果表明,直接横摆力矩控制在调节人类车辆系统的响应方面具有潜在的潜力。驾驶员模型和控制系统之间的交互被证明是有利的。详细介绍了这项研究的科学贡献和意义,包括将闭环仿真应用于工程教育。给出了有关已开发模型,方法论和系统功效的结论。最后,提供了有关车辆建模和运动控制的潜在改进和未来研究的建议。

著录项

  • 作者

    Rieveley Robert;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号