首页> 外文OA文献 >Night time pedestrian detection for Advanced Driving Assistance Systems (ADAS) using near infrared images
【2h】

Night time pedestrian detection for Advanced Driving Assistance Systems (ADAS) using near infrared images

机译:使用近红外图像的高级驾驶辅助系统(ADAS)夜间行人检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

From last decade, Safety plays a major role in automobile industry, which results in the invention of various safety measures such as air bags, central locking system, automatic breaking system, traffic signal detection etc. In such case pedestrian detection in night vision is one of the vital issues in advanced driving assistance systems. The main aim of the night vision systems is to avoid collision of vehicles with the pedestrians while driving on roads. It is very much important in night time, due to the varying light conditions it is very difficult to detect a pedestrian. With the presentation of night vision systems another sort of driver support is achieved, which can compensate the weaknesses of the human visual system after shutdown of sunlight. A NIR (Near Infrared) camera is used in this system to take images of a night scene. As there are large intra class variations in the pedestrian poses, a tree structured classifier is proposed here to handle the problem by training it with different subset of images and different sizes. This research work discusses about combination of Haar-Cascade and HOG-SVM (Histogram of Oriented Gradients-Support Vector Machine) for classification and validation. Haar-Cascade is trained such that to classify the full body of humans which eliminates most of the non-pedestrian regions. For refining the pedestrians after detection, a part based SVM classifier with HOG features is used. Upper and lower body part HOG features of the pedestrians are used for part based validation of detected bounding boxes. A full body validation scheme is also implemented using HOG-SVM when any one of the part based validation does not validate that particular part. Combination of the different types of complementary features yields better results. Experiments on test images determines that the proposed pedestrian detection system has a high detection rate and low false alarm rate since it works on part based validation process.
机译:从上个十年开始,安全性在汽车工业中起着举足轻重的作用,因此发明了各种安全措施,例如安全气囊,中央锁定系统,自动中断系统,交通信号检测等。在这种情况下,夜视中的行人检测是一种高级驾驶辅助系统中的重要问题。夜视系统的主要目的是避免在道路上行驶时车辆与行人发生碰撞。在夜间,这非常重要,因为光线条件不同,很难检测到行人。通过夜视系统的介绍,可以实现另一种驾驶员支持,可以在日光关闭后补偿人类视觉系统的弱点。此系统中使用NIR(近红外)相机拍摄夜景图像。由于行人姿势中的类内差异较大,因此在此提出了一种树状结构的分类器,通过使用不同的图像子集和不同的大小来训练它来解决该问题。这项研究工作讨论了结合Haar-Cascade和HOG-SVM(定向梯度直方图-支持向量机)进行分类和验证。 Haar-Cascade经过培训,可以对整个人体进行分类,从而消除了大多数非行人区域。为了在检测后完善行人,使用了具有HOG功能的基于零件的SVM分类器。行人的上半身和下半身HOG特征用于对检测到的边界框进行基于零件的验证。当任何基于零件的验证都不验证该特定零件时,也可以使用HOG-SVM来实现一个全身验证方案。不同类型的互补特征的组合产生更好的结果。在测试图像上进行的实验确定,该提议的行人检测系统具有较高的检测率和较低的误报率,因为它可以在基于零件的验证过程中工作。

著录项

  • 作者

    Govardhan P;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号