首页> 外文OA文献 >An intelligent approach for multi-response optimization: a case study of non-traditional machining process
【2h】

An intelligent approach for multi-response optimization: a case study of non-traditional machining process

机译:多响应优化的智能方法:非传统加工工艺的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work proposes an intelligent approach to solve multi-response optimization problem in electrical discharge machining of AISI D2 using response surface methodology (RSM) combined with optimization techniques. Four process parameters (factors) such as discharge current (Ip), pulse-on-time (Ton), duty factor (τ) and flushing pressure (Fp) and four important responses like material removal rate (MRR), tool wear rate (TWR), surface roughness (Ra) and circularity (r1/r2) of machined component are considered in this study. A Box-Behnken RSM design is used to collect experimental data and develop empirical models relating input parameters and responses. Genetic algorithm (GA), an efficient search technique, is used to obtain the optimal setting for desired responses. It is to be noted that there is no single optimal setting which will produce best performance satisfying all the responses. In industries, to solve such problems, managers frequently depend on their past experience and judgement. Human intervention causes uncertainties present in the decision making process gleaned into solution methodology resulting in inferior solutions. Fuzzy inference system has been a viable option to address multiple response problems considering uncertainties and impreciseness caused during judgement process and experimental data collection. However, choosing right kind of membership functions and development of fuzzy rule base happen to be cumbersome job for the managers. To address this issue, a methodology based on combined neuro-fuzzy system and particle swarm optimization (PSO) is adopted to optimize multiple responses simultaneously. To avoid the conflicting nature of responses, they are first converted to signal-to-noise (S/N) ratio and then normalized. The proposed neuro-fuzzy approach is used to convert the responses into a single equivalent response known as Multi-response Performance Characteristic Index (MPCI). The effect of parameters on MPCI values has been studied in detail and a process model has been developed. Finally, optimal parameter setting is obtained by particle swarm optimization technique. The optimal setting so generated that satisfy all the responses may not be the best one due to aggregation of responses into a single response during neuro-fuzzy stage. In this direction, a multi-objective optimization based on non-dominated sorting genetic algorithm (NSGA) has been adopted to optimize the responses such that a set of mutually dominant solutions are found over a wide range of machining parameters. The proposed optimal settings are validated using thermal-modeling of finite element analysis.
机译:本工作提出了一种智能方法,将响应面方法(RSM)与优化技术相结合,解决AISI D2放电加工中的多响应优化问题。四个过程参数(因素),例如放电电流(Ip),脉冲接通时间(Ton),占空比(τ)和冲洗压力(Fp),以及四个重要的响应,例如材料去除率(MRR),工具磨损率( TWR),加工零件的表面粗糙度(Ra)和圆度(r1 / r2)在本研究中考虑。 Box-Behnken RSM设计用于收集实验数据并开发与输入参数和响应有关的经验模型。遗传算法(GA)是一种有效的搜索技术,用于获取所需响应的最佳设置。要注意的是,没有一个最佳设置可以产生满足所有响应的最佳性能。在行业中,为了解决此类问题,管理人员经常依赖于他们过去的经验和判断。人为干预会导致决策过程中存在不确定性,这些不确定性会收集到解决方案方法中,从而导致解决方案的质量下降。考虑到在判断过程和实验数据收集过程中引起的不确定性和不精确性,模糊推理系统已成为解决多种响应问题的可行选择。然而,选择正确的隶属函数类型和开发模糊规则库对于管理者来说是繁琐的工作。为了解决这个问题,采用了一种基于组合的神经模糊系统和粒子群优化(PSO)的方法来同时优化多个响应。为了避免响应的冲突性质,首先将它们转换为信噪比(S / N),然后将其标准化。所提出的神经模糊方法用于将响应转换为单个等效响应,称为多响应性能特征索引(MPCI)。详细研究了参数对MPCI值的影响,并开发了过程模型。最后,通过粒子群优化技术获得最优参数设置。由于在神经模糊阶段将响应聚合为单个响应,因此生成的满足所有响应的最佳设置可能不是最佳设置。在这个方向上,已采用基于非支配排序遗传算法(NSGA)的多目标优化来优化响应,从而在广泛的加工参数上找到了一组相互主导的解。使用有限元分析的热模型验证了建议的最佳设置。

著录项

  • 作者

    Sahu Jambeswar;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号