首页> 外文OA文献 >Position and Heading Control of an Autonomous udUnderwater Vehicle using Model Predictive Control
【2h】

Position and Heading Control of an Autonomous udUnderwater Vehicle using Model Predictive Control

机译:自主 ud的位置和航向控制使用模型预测控制的水下航行器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autonomous Underwater Vehicle (AUV) is currently being used for scientific research, udcommercial and military underwater applications. AUV requires autonomous guidance and udcontrol systems to perform underwater applications. This Thesis is concerned with position udand heading control of AUV using Model Predictive Control. udPosition control is a typical motion control problem, which is concerned with the design of udcontrol laws that force a vehicle to reach and maintain a fixed position. The position control udof body fixed x-axis to a fixed point using MPC toolbox of MATLAB is done here. System is udmodelled Using INFANTE AUV hydrodynamic parameters. There is physical limitation on udthruster value. ud udHeading control is concerned with the design of control laws that force a vehicle to reach and udmaintain a fixed direction. There are physical limitations on control input (Rudder deflection) udin heading control also a high yaw rate can produce sway and roll motion, which makes it udnecessary to put constraint on yaw rate. The MPC have a clear advantage in case of control udand input constraints. To avoid constraint violation and feasibility issues of MPC for AUV udheading control Disturbance Compensating (DC) MPC scheme is used. The DC-MPC udscheme is used for ship motion control and gave better results so we are using the proposed udscheme to AUV heading control. udA 2 DOF AUV model is taken with yaw rate and rudder deflection constraints. Line of sight ud(LOS) guidance scheme is utilised to generate the reference heading, which is to be followed. udTwo types of disturbances are taken constant and sinusoidal. Then simulation has been done udfor standard MPC, M-MPC and DC-MPC. A (DC) MPC algorithm is used to satisfy the state udconstraints in presence of disturbance to get a better performance. udStandard MPC gives good result without disturbance. But in case of disturbance yaw udconstraint is violated. At many time steps the standard MPC has no solution for given yaw udrate constraint at those time steps the constraints have been removed. The M-MPC satisfies udthe constraints. The DC-MPC gives better result in comparison to standard MPC and udModified MPC. The steady state oscillations are less in DC-MPC as compared to M-MPC for udsinusoidal disturbances. udThe minimization of extra cost function in DC-MPC makes the result better than M-MPC. By udsolving the extra cost function we try to make response close to that of without disturbance. udThe only added complexity in DC-MPC is ni-dimensional optimization problem. Which is udvery less compared to Np*ni, complexity of M-MPC. Where ni is the dimension of control udinput and Np is value of prediction horizon. The feasibility of DC-MPC scheme largely uddepends on the magnitude of disturbance. If disturbance is too large then this scheme is not udfeasible. ud
机译:自主水下航行器(AUV)目前正用于科学研究,商业和军事水下应用。 AUV需要自主的制导和控制系统来执行水下应用。本文的研究内容是使用模型预测控制对水下机器人进行定位和航向控制。 ud位置控制是一个典型的运动控制问题,与 udcontrol定律的设计有关,该定律迫使车辆到达并保持固定位置。此处使用MATLAB的MPC工具箱完成了将x轴固定到固定点的位置控制 udof。使用INFANTE AUV流体动力参数对系统进行了建模。 udthruster值存在物理限制。前进方向控制与强制车辆到达并保持固定方向的控制定律有关。控制输入​​(舵偏转)有物理限制。 udin航向控制,高的偏航率也会产生摇摆和侧倾运动,因此,有必要限制偏航率。在控制和输入约束的情况下,MPC具有明显的优势。为避免约束违规和用于AUV降落控制的MPC的可行性问题,使用了干扰补偿(DC)MPC方案。 DC-MPC udscheme用于船舶运动控制,并给出了更好的结果,因此我们将拟议的 udscheme用于AUV航向控制。 udA 2自由度AUV模型是在偏航率和方向舵偏转约束条件下获得的。视线 ud(LOS)引导方案用于生成要遵循的参考航向。 ud两种类型的干扰是恒定的和正弦的。然后对标准MPC,M-MPC和DC-MPC进行了仿真。 (DC)MPC算法用于满足存在干扰的状态 udconstraints以获得更好的性能。 ud标准MPC可以提供良好的效果而不会受到干扰。但是在发生干扰的情况下,偏航 udconstraint被违反。在许多时间步中,标准MPC对于给定的偏航角约束没有解决方案,在这些时间步中,约束已被删除。 M-MPC满足约束条件。与标准MPC和 udModified MPC相比,DC-MPC提供更好的结果。与正弦扰动的M-MPC相比,DC-MPC的稳态振荡更少。 ud将DC-MPC中的额外成本函数最小化会使结果优于M-MPC。通过解决额外成本函数,我们试图使响应接近无干扰响应。 udp DC-MPC中唯一增加的复杂性是三维优化问题。与Np * ni相比,M-MPC的复杂度要小得多。其中ni是控制 udinput的维数,Np是预测范围的值。 DC-MPC方案的可行性很大程度上取决于干扰的程度。如果干扰太大,则此方案不可行。 ud

著录项

  • 作者

    Jha Pankaj Kumar;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号