首页> 外文OA文献 >Label-free detection of biomolecules by a field-effect transistor microarray biosensor with bio-functionalized gate surfaces
【2h】

Label-free detection of biomolecules by a field-effect transistor microarray biosensor with bio-functionalized gate surfaces

机译:具有生物功能化门表面的场效应晶体管微阵列生物传感器对生物分子的无标记检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this work was to bio-functionalize the SiO2 gate of ion-sensitive field-effect transistor (ISFET) to covalent bind DNA sequences via a series of chemical reactions. On the modified surface, the detection of the DNA hybridization and in particular single nucleotide polymorphism (SNP) detection was achieved. Furthermore, to explore the working principle of the field-effect detection, polyelectrolyte multilayers (PEMs) buildup and recognition reaction of biotin and streptavidin were also analyzed with the ISFET biosensors. Up to now, labeling detection systems dominated the DNA detection bioassays. Here either the probe or the catcher DNA are labeled with fluorescence-, radioactive- or enzymatic-labels. In recent years, many new approaches for signal generation that avoid labeling have been reported. Based on the demand of a fast, cheap, highly sensitive, label-free and direct electronic readout, ISFET biosensor are ideally suited. In my work, I started with bio-functionalization of SiO2 control substrates, leading to a covalent binding of the probe biomolecules, i.e. single stranded DNA and biotin. In this surface modification process, a step-by-step protocol was setup, firstly cleaning/activation with MeOH/HCl for 30 mins generated the highest -OH bond density. Secondly, silanization with 3-aminopropyltriethoxysilane (APTES) in gas phase left a thinner, more homogeneous silane layer. Crosslinking with succinic anhydride solution for 2 hours controlled the following DNA immobilization. The DNA position-specific microarrays for hybridization detection were fabricated by a custom-made aligned microspotter system. The DNA-DNA hybridization has higher efficiency in higher ionic strength solution (SSC buffer solution) and higher selectivity for SNP detection in lower ionic strength TE buffer solutions. All bioassay protocols were successfully transferred to the fully encapsulated ISFET devices and were “mild” enough for the encapsulation material of the chips. In the direct current (DC) readout, ISFETs as a potentiometric biosensors monitor the change of the solid/liquid interface potential caused by the attachment of biomolecules. To investigate the detection principle of the ISFETs in general, polyelectrolyte multilayers (PEMs) were used as a model system. During the layer-by-layer buildup, the thickness of the PEMs and the outer charge of the layer system are changing, which can be recorded by the ISFETs. The recorded results confirmed the surface charge sensitivity of the ISFETs. With increasing distance away from the surface, the charge detection of the ISFETs decreased exponentially. To reduce the long-term drift of the FET readout and exclude possible side effects from temperature, pH changes, and buffer solutions etc., a reference chip or a reference channel were used to perform differential readout detections. The DNA immobilization between covalent binding and electrostatic adsorption caused a gate voltage change of 4mV. It confirmed that the covalent binding of DNA immobilization introduced a higher surface coverage compared to the electrostatic adsorption. The differential DNA hybridization between a perfect matched (PM) and a fully mismatched (FMM) probe sequence also gave a clear signal. However, the SNP is barely distinguishable in DC readout as potential changes. Therefore, ISFETs as impedimetric biosensors were developed to record the impedance change at the gate input in an alternating current (AC) mode. In the optimized detection solution, a reliable recording of ex-situ SNP was achieved and in-situ detection showed DNA hybridization kinetically. In the first proof of principle experiment, the adding of gold-nanoparticle (AuNPs) to the target DNA did not enhance the selectivity of the SNPs detection, which confirmed the valid charge sensitive of ISFET in electrical double layer. Furthermore, in-situ and ex-situ measurements of biotin/streptavidin binding revealed distinct effects on the transfer function curves. The recordings of the multilayer buildup in AC and DC readouts modes offered details for the principle explanation of the signals and evidence about the main components in the equivalent circuit simulations. The main parameters such as contact lane capacitance and solution resistance were firstly identified and the influence of a biomembrane attached to the ISFET gate was in a first approximation modeled.
机译:这项工作的目的是通过一系列化学反应,对离子敏感场效应晶体管(ISFET)的SiO2栅极进行生物功能化,以共价结合DNA序列。在修饰的表面上,实现了DNA杂交的检测,尤其是单核苷酸多态性(SNP)检测。此外,为了探索场效应检测的工作原理,还使用ISFET生物传感器分析了聚电解质多层(PEM)的积聚以及生物素和链霉亲和素的识别反应。到目前为止,标记检测系统主导了DNA检测生物测定。在这里,探针或捕获DNA都用荧光标记,放射性标记或酶标记标记。近年来,已经报道了许多避免标记的信号生成新方法。基于对快速,廉价,高度灵敏,无标签和直接电子读出的需求,ISFET生物传感器非常适合。在我的工作中,我首先进行了SiO2控制底物的生物功能化,导致了探针生物分子(即单链DNA和生物素)的共价结合。在此表面改性过程中,设置了分步操作规程,首先使用MeOH / HCl清洁/活化30分钟,以生成最高的-OH键密度。其次,在气相中用3-氨基丙基三乙氧基硅烷(APTES)进行硅烷化可得到更薄,更均匀的硅烷层。与琥珀酸酐溶液交联2小时控制了随后的DNA固定。用于DNA杂交检测的DNA位置特异性微阵列是通过定制的比对微点仪系统制备的。在较高离子强度的溶液(SSC缓冲溶液)中,DNA-DNA杂交效率更高,而在较低离子强度的TE缓冲溶液中,SNP检测的选择性更高。所有生物测定规程已成功转移至完全封装的ISFET器件,并且对于芯片的封装材料而言“足够温和”。在直流(DC)读数中,作为电位生物传感器的ISFET监视由生物分子的附着引起的固/液界面电位的变化。一般而言,为了研究ISFET的检测原理,将聚电解质多层(PEM)用作模型系统。在逐层构建期间,PEM的厚度和层系统的外部电荷会发生变化,这可由ISFET记录。记录的结果证实了ISFET的表面电荷敏感性。随着距表面的距离增加,ISFET的电荷检测呈指数下降。为了减少FET读数的长期漂移并排除温度,pH值变化和缓冲溶液等可能产生的副作用,参考芯片或参考通道用于执行差分读数检测。共价结合和静电吸附之间的DNA固定导致栅极电压变化4mV。证实了与静电吸附相比,DNA固定化的共价结合引入了更高的表面覆盖率。完全匹配(PM)和完全错配(FMM)探针序列之间的差异DNA杂交也给出了清晰的信号。然而,随着电势的变化,SNP在直流读数中几乎无法区分。因此,开发出ISFET作为阻抗生物传感器,以交流(AC)模式记录栅极输入处的阻抗变化。在优化的检测溶液中,实现了对异位SNP的可靠记录,并且原位检测显示了DNA杂交动力学。在第一个原理验证实验中,向目标DNA中添加金纳米颗粒(AuNPs)并没有提高SNPs检测的选择性,这证实了ISFET在双电层中具有有效的电荷敏感性。此外,生物素/链霉亲和素结合的原位和异位测量显示了对传递函数曲线的明显影响。交流和直流读数模式下的多层堆积记录为信号的原理解释提供了详细信息,并为等效电路仿真中的主要成分提供了证据。首先确定主要参数,例如接触线电容和溶液电阻,并以第一近似模型模拟附着在ISFET栅极上的生物膜的影响。

著录项

  • 作者

    Han Yinhua;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号