首页> 外文OA文献 >B-Spline Volume Meshing for CFD Simulations Using Modified Catmull-Clark Methods
【2h】

B-Spline Volume Meshing for CFD Simulations Using Modified Catmull-Clark Methods

机译:使用改进的Catmull-Clark方法进行CFD模拟的B样条体积网格划分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, new techniques for the fast semiautomatic generation of high-quality block-structured B-spline volume meshes for numerical flow simulations are presented. The starting point is a given surface of arbitrary topology representing an object in a flow field. It is defined by a collection of untrimmed or trimmed B-spline patches described by parametrizations which are usually not suitable for numerical flow simulations, e.g., due to gaps or overlaps. The first part of the mesh generation process developed in this work is the generation of a surface mesh as a control mesh for a Catmull-Clark surface which approximates the given surface. For this purpose, an initial coarse polyhedron has to be constructed manually or with the aid of templates first. A control mesh is then generated from this initial polyhedron by applying an iterative surface fitting approach. The first iteration step is a subdivision of the initial polyhedron using a modified Catmull-Clark method. The modification allows for modeling sharp creases. The second iteration step precomputes points of the Catmull-Clark limit surface. These limit points are projected onto the target surface in the third iteration step by applying the Nelder-Mead algorithm. In the last iteration step, the projected points are approximated using the CGLS method to obtain new surface mesh vertices with improved approximation properties for the following iteration loop. User interventions, e.g., for surface mesh smoothing, parameter correction or feature detection, are possible at any stage of the iterative process. The surface meshing is finished when the approximation of the given surface is sufficient, measured by the distance of the limit points to the B-spline surface. The convergence behavior of the iterative process is investigated. The extension of the surface mesh to a volume mesh is done in two steps: first, an offset mesh is attached to the surface mesh for the accurate resolution of thin boundary layers, which occur in viscous fluid flow close to objects, e.g., for high Reynolds number flows. The second step of the volume mesh generation is the construction of a far-field mesh which is attached to the offset mesh. This is the part of the meshing process of this work which needs the most user input.In a last step, the final volume mesh is converted into a block-structured B-spline mesh. The inner surface mesh can then be understood as a control mesh for a B-spline surface described by a watertight reparametrization of the given B-spline surface. Further refinements of the volume mesh can then be applied by spline evaluation. Alternatively, an extension of the Catmull-Clark rules for the application to volumes can be used. If the offset and the far-field mesh are generated during the iterative surface meshing process, this process can be continued by replacing the surface subdivision in the first iteration step by volume subdivision. The final B-spline volume meshes are well-suited for adaptive flow simulations.The new meshing techniques are tested for two different wing-fuselage configurations and an airplane engine. For one of the wing-fuselage configurations, results of numerical simulations with the adaptive finite volume flow solver Quadflow are compared with experimental data obtained from wind tunnel readings.
机译:本文提出了用于数值流模拟的快速半自动生成高质量块结构B样条体积网格的新技术。起始点是表示流场中对象的任意拓扑的给定表面。它由参数化描述的未修整或修整过的B样条斑块的集合定义,这些参数通常不适用于数值流模拟,例如由于间隙或重叠。在这项工作中开发的网格生成过程的第一部分是生成表面网格,作为Catmull-Clark表面的控制网格,该网格近似于给定的表面。为此,必须手动或首先借助模板来构造初始的粗糙多面体。然后,通过应用迭代曲面拟合方法,从此初始多面体生成控制网格。第一步是使用改进的Catmull-Clark方法对初始多面体进行细分。修改允许对急剧的折痕建模。第二个迭代步骤会预先计算Catmull-Clark极限曲面的点。通过应用Nelder-Mead算法,在第三次迭代步骤中将这些极限点投影到目标表面上。在最后一个迭代步骤中,使用CGLS方法对投影点进行近似,以获得新的曲面网格顶点,该曲面顶点具有用于后续迭代循环的近似特性。在迭代过程的任何阶段都可以进行用户干预,例如表面网格平滑,参数校正或特征检测。当给定曲面的逼近程度足够大时,即通过极限点到B样条曲线曲面的距离来衡量,完成曲面网格划分。研究了迭代过程的收敛行为。将表面网格物体扩展为体积网格物体是通过两个步骤完成的:首先,将偏移网格物体附着到表面网格物体上,以精确分辨薄边界层,这在靠近对象的粘性流体流中会发生,例如对于高粘度的流体。雷诺数流。体网格生成的第二步是构建附着到偏移网格的远场网格。这是这项工作的网格化过程的一部分,需要用户最多的输入。在最后一步,最终的体积网格被转换为块结构化的B样条网格。内表面网格然后可以理解为B样条表面的控制网格,通过给定B样条表面的水密性重新参数化来描述。然后可以通过样条评估应用体积网格的进一步细化。或者,可以使用将应用程序的Catmull-Clark规则扩展到卷。如果在迭代曲面网格化过程中生成了偏移和远场网格,则可以通过用体积细分替换第一迭代步骤中的曲面细分来继续此过程。最终的B样条体积网格非常适合于自适应流动模拟。新的网格划分技术已针对两种不同的机翼机身配置和飞机发动机进行了测试。对于其中一种机翼机身配置,将自适应有限体积流量求解器Quadflow的数值模拟结果与从风洞读数获得的实​​验数据进行了比较。

著录项

  • 作者

    Rom Christian Michael;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号