首页> 外文学位 >Adaptive and dynamic meshing methods for numerical simulations .
【24h】

Adaptive and dynamic meshing methods for numerical simulations .

机译:数值模拟的自适应动态网格方法。

获取原文
获取原文并翻译 | 示例

摘要

For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures.; For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost.; Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method.; Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations.
机译:为了对许多工程感兴趣的问题进行数值模拟,希望有一种能够生成具有负担得起的低网格数的高质量网格的自动网格自适应工具。这对于以解决方案的各向异性特征为特征并且需要在高梯度方向上进行网格聚类的问题尤其重要。网格划分中的另一个重要问题出现在具有不稳定边界或界面的不稳定模拟领域,在该领域中必须通过使计算网格变形来适应边界的运动。类似地,存在这样的问题,其中需要调整当前网格以获得更准确的解决方案,因为最初对高梯度区域的预测不准确,或者它们在整个模拟过程中都改变了位置。为了解决这些问题,我们提出了三种新颖的程序。为此,在本工作的第一部分中,我们提出了一种基于度量驱动的h适应的三维各向异性四面体网格的优化程序。网格中所需的各向异性由度量决定,该度量定义了整个计算域中网格元素的大小,形状和方向。通过使用拓扑和几何算子,迭代地调整网格,直到最终的网格最小化给定的目标函数为止。在这项工作中,目标函数测量每个单纯形的度量与目标度量之间的距离,该距离可以是用户定义的(先验的)或后验误差分析的结果。在适应过程中,人们尝试减少基于度量的目标函数,直到最终网格在给定的公差范围内与目标保持一致。然而,在诸如拐角和复杂的面相交的区域中,发现顺从性条件非常困难,有时甚至无法满足。为了解决这个问题,我们提出了一种基于模拟退火技术的临时应用的优化过程,该过程提高了从网格中删除不良元素的可能性。此外,提出了模拟退火的局部实现以降低计算成本。本质上不稳定的许多具有挑战性的多物理场和多场问题的特征是边界和/或界面的移动。当边界位移较大时(通常在使用隐式时间行进过程时发生),退化元素容易在网格中形成,因此需要频繁重新网格化。为了解决这个问题,在本工作的第二部分中,我们提出了一种新的r适应方法。这项新技术对于在边界处承受较大施加位移的简单变形网格(例如,三角形,tet)和非简单变形网格(例如,四边形,十六进制)均有效。使用由边缘弹簧和一组虚拟弹簧组成的线性弹簧网络使二维或三维网格变形。虚拟弹簧以与元件折叠相对的方式构造。这是通过将每个顶点通过附着在顶点上的弹簧及其在球实体上的投影约束到其球上来实现的。使用预处理的共轭梯度法可以解决所得的线性问题。在二维和三维示例中,将该新方法与经典弹簧类比技术进行了比较,突出了该新方法所实现的性能改进。网格是数值模拟的重要组成部分。根据几何形状和流动条件,针对每个特定问题的最合适的网格是不同的。网格通常是通过使用合适的软件包或求解PDE生成的。在这两种情况下,工程直觉在决定应在何处进行聚类时都起着重要作用。此外,对于不稳定的问题,每个时间步长的梯度都不同,这需要在仿真过程中经常重新网格化。

著录项

  • 作者

    Acikgoz, Nazmiye.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号