首页> 外文OA文献 >Neutral and cationic complexes of the rare earth metals : synthesis, characterisation and polymerisation catalysis
【2h】

Neutral and cationic complexes of the rare earth metals : synthesis, characterisation and polymerisation catalysis

机译:稀土金属的中性和阳离子络合物:合成,表征和聚合催化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The most common starting materials for the access to cationic complexes of the rare-earth metals are the homoleptic tris(trimethylsilylmethyl) precursors [Ln(CH2SiMe3)3(thf)2]. The principal objective of this work has been to substitute the well-known CH2SiMe3 group for other fragments, and study the accessibility of the related cationic species. In Chapter B.1, homoleptic tri(allyl)s generate half-sandwich species by reaction with HC5Me4SiMe3, whilst monocationic bis(allyl) species are produced by protonolysis with [NEt3H][BPh4]. They instantaneously decompose via C–H activation in pyridine. Lewis acids such as [Al(CH2SiMe3)3] or [BPh3] are suitable reagents for the abstraction of an allyl moiety from tri(allyl) parents, yielding the corresponding ion-pairs in which the anion features a linear allyl group. Reaction of the neutral half-sandwich complexes with one equivalent of acid produces the corresponding monocationic allyl compounds, which are rare examples of cationic monocyclopentadienyl alkyl complexes of the rare-earth metals. In a similar reaction, the bis(allyl) monocations are converted into dicationic mono(allyl) species, which are stable in pyridine without decomposition for over one day. All cationic species described in this chapter are active catalysts for the polymerisation of 1,3-butadiene. In Chapter B.2, aluminate precursors of the type [Ln(AlMe4)3] are utilised to generate the half-sandwich bis(aluminate) neutral species by reaction with HC5Me4SiMe3. Reaction of these neutral precursors with [NEt3H][BPh4] in thf induces the cleavage of both aluminate moieties as well as protonolysis of one of them, and affords the first structurally authenticated charge-separated cationic half-sandwich methyl derivatives. Abstraction of the remaining methyl group by an additional equivalent of acid yields dicationic cyclopentadienyl complexes. The known reaction of [Ln(AlMe4)3] with two equivalents of acid generates dicationic methyl species. This procedure can be applied to lanthanum and samarium precursors. The resulting methyl dications adopt in the solid state a distorded capped octahedral geometry. The half-sandwich bis(aluminate) scandium species is obtained by salt elimination, but not in pure form. Splitting of the two aluminate moieties in this compounds results in the formation of a dimeric monocyclopentadienyl di(methyl) complex. Investigations on the suitability of the borohydride group BH4 for the access to cationic species are presented in Chapter B.3. Thus, direct protonolysis of the neutral tris(borohydride) parents with one equivalent of [NEt3H][BPh4] yields the corresponding monocationic bis(borohydride) species. The charge separated ion pairs adopt a regular trigonal bipyramidal geometry in the solid state, with trans-arranged borohydride moieties. The cations are slightly more active than their neutral parents for the ring-opening polymerisation of epsilon-caprolactone. In Chapter B.4, the synthesis of the series of alkyl complexes featuring a dianionic constrained geometry ligand is reported. The alkyl complexes are converted into the corresponding dimeric hydride species by reaction with PhSiH3 or H2. Hydrosilylation of 1-decene catalysed by the in situ generated hydride complexes selectively gives 1,2-insertion into the Ln–H bond, whilst mixtures of the Markovnikov and anti-Markovnikov products are obtained in the case of styrene. The structural characterisation of the series of Group 13 tri(alkyl) [E(CH2SiMe3)3]n is presented in Chapter B.5. The boron and gallium homologues are monomeric, whilst the aluminium and indium derivatives form dimers in the solid state. The access to aluminium tri(allyl) as thf-adduct is reported, and the formation of the unprecedent monocationic bis(allyl) species deriving therefrom is described.
机译:获得稀土金属阳离子络合物的最常见起始材料是均三(三(三甲基甲硅烷基)甲基)前体[Ln(CH2SiMe3)3(thf)2]。这项工作的主要目的是用众所周知的CH2SiMe3基团代替其他片段,并研究相关阳离子物种的可及性。在第B.1章中,高纯三(烯丙基)通过与HC5Me4SiMe3反应生成半夹心物质,而单阳离子双(烯丙基)则通过与[NEt3H] [BPh4]质子分解产生。它们通过吡啶中的C–H活化立即分解。路易斯酸例如[Al(CH 2 SiMe 3)3]或[BPh 3]是用于从三(烯丙基)母体提取烯丙基部分的合适试剂,产生相应的离子对,其中阴离子具有线性烯丙基。中性半三明治复合物与一当量的酸反应产生相应的单阳离子烯丙基化合物,这是稀土金属的阳离子单环戊二烯基烷基络合物的罕见实例。在类似的反应中,双(烯丙基)单阳离子被转化成双官能的单(烯丙基)物质,其在吡啶中稳定,一天内没有分解。本章中描述的所有阳离子物种都是用于1,3-丁二烯聚合的活性催化剂。在第B.2章中,[Ln(AlMe4)3]类型的铝酸盐前体用于与HC5Me4SiMe3反应生成半三明治双(铝酸盐)中性物质。这些中性前体与[NEt3H] [BPh4]的反应诱导铝酸酯部分的裂解以及其中一个的质子分解,并提供了第一个结构鉴定的电荷分离阳离子半三明治甲基衍生物。通过额外当量的酸提取剩余的甲基,生成二环戊二烯基络合物。 [Ln(AlMe4)3]与两当量酸的已知反应会生成二甲基甲基。该程序可以应用于镧和mar的前体。所得的甲基指示剂在固态下采用扭曲的带帽八面体几何形状。半三明治双(铝酸盐)scan物种是通过除盐获得的,但不是纯净形式。该化合物中两个铝酸酯部分的分裂导致形成二聚单环戊二烯基二(甲基)配合物。 B.3章介绍了硼氢化物基团BH4对获得阳离子物种的适用性的研究。因此,用一当量的[NEt3H] [BPh4]对中性三(硼氢化物)母体进行直接质子分解可得到相应的单阳离子双(硼氢化物)。电荷分离的离子对在固态下具有规则的三角双锥体几何结构,并具有反式排列的硼氢化物部分。对于ε-己内酯的开环聚合,阳离子比它们的中性母体活性更高。在第B.4章中,报道了一系列以双阴离子受限的几何配体为特征的烷基配合物的合成。通过与PhSiH3或H2反应,烷基络合物被转化为相应的二聚氢化物。原位生成的氢化物配合物催化的1-癸烯的氢化硅烷化选择性地将1,2-插入Ln-H键中,而在苯乙烯的情况下则获得了马尔可夫尼科夫和反马尔可夫尼科夫产物的混合物。 B.5章介绍了第13组三(烷基)[E(CH2SiMe3)3] n系列的结构表征。硼和镓的同系物是单体,而铝和铟的衍生物则形成固态的二聚体。据报道,三(烯丙基)铝以thf-加合物形式存在,并且描述了由此衍生的前所未有的单阳离子双(烯丙基)物质的形成。

著录项

  • 作者

    Robert Dominique;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号