首页> 外文OA文献 >Discovery of usage based item similarities to support recommender systems in dealing with rarely used items
【2h】

Discovery of usage based item similarities to support recommender systems in dealing with rarely used items

机译:发现基于使用情况的项目相似性,以支持推荐系统处理很少使用的项目

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender systems already are a consistent part in the life of most people regularly using the internet. They get recommendations when they shop at Amazon.com, when they watch video clips on Youtube.com, or when they listen to music on Spotify.com etc. There are still many challenges in recommender systems research, though. One challenge that is present in almost all application domains is data sparsity, i.e. missing information about items or users. In very sparse application domains, data sparsity can completely hinder the creation of recommendations. In more diverse application domains, where few items are heavily used while most items are rarely used, the popular items tend to be recommended over-proportionally often. In contrast, the niche items tend to be excluded from the recommendation lists. This thesis therefore aims to contribute to the state-of-the-art in handling data sparsity in recommender systems. Therefore, it investigates techniques to find similarities between the items solely by analysing their usage. This approach is based on the assumption stemming from context-aware computing that the users' contexts and knowledge influence their activities and, thus, are inherent in the items' usage. Hence, no additional information like content or social metadata are required to find relations between the items. For this purpose, techniques that are successfully applied in corpus linguistics to detect relations between words by analysing their usage in language are adapted to items and their usage. This way, pair-wise item relations as well as item clusters are created based on the items' usage. These usage-based item relations are then utilised in standalone and hybrid recommender systems with the goal to create suitable recommendations for as many items as possible including the rarely used ones. The discussed techniques are evaluated on four data sets, two of them were collected in web portals that support learners in finding suitable learning materials while the other two data sets were collected in web portals that recommend movies to users. The evaluation results show that by exploiting the items' usage, usage-based relations between the items can be discovered that indeed give a hint at their similarity. Furthermore, the usage-based recommender systems are able to create more recommendations in application domains holding predominantly rarely used items than the presented state-of-the-art recommendation approaches. In application domains holding heavily used items that are recommended over-proportionally often in addition to many rarely used items, the usage-based recommender systems are able to recommend more niche items than the presented state-of-the-art recommendation approaches without lowering the accuracy of the recommendations. Thus, the usage-based approaches are better suited to provide users with accurate recommendations for idiosyncratic items than the recommendation approaches presented in literature so far that do not require additional metadata either.
机译:推荐系统已经成为大多数定期使用Internet的人们生活中不可或缺的部分。当他们在Amazon.com上购物,在Youtube.com上观看视频剪辑或在Spotify.com上收听音乐时,他们会获得推荐。尽管如此,推荐系统研究仍然面临许多挑战。几乎所有应用程序域中都存在的一项挑战是数据稀疏性,即缺少有关项目或用户的信息。在非常稀疏的应用程序域中,数据稀疏性会完全阻碍创建建议。在更多样化的应用程序域中,很少使用大量项目,而很少使用大多数项目,受欢迎的项目往往会被按比例推荐。相反,利基项目倾向于从推荐列表中排除。因此,本论文旨在为处理推荐系统中的数据稀疏性方面的最新技术做出贡献。因此,它研究了仅通过分析其用法来查找项目之间相似性的技术。此方法基于上下文感知计算得出的假设,即用户的上下文和知识会影响其活动,因此是项目使用所固有的。因此,不需要诸如内容或社交元数据之类的附加信息来查找项目之间的关系。为此,已成功应用于语料库语言学中的技术通过分析其在语言中的用法来检测单词之间的关系,从而使其适用于项目及其用法。这样,将根据物料的用途创建成对物料关系以及物料簇。这些基于使用情况的项目关系随后在独立和混合推荐系统中使用,目的是为尽可能多的项目(包括很少使用的项目)创建合适的建议。在四个数据集上评估了讨论的技术,其中两个数据集收集在门户网站中,以支持学习者查找合适的学习材料,而另外两个数据集则收集在向用户推荐电影的门户网站中。评估结果表明,通过利用项目的使用情况,可以发现项目之间基于使用情况的关系,这确实暗示了它们的相似性。此外,与所提出的最新推荐方法相比,基于使用情况的推荐器系统能够在持有主要很少使用的项目的应用程序域中创建更多推荐。在应用领域中,除了许多很少使用的物品之外,还经常过度使用推荐的经常使用的物品,基于使用情况的推荐器系统可以比现有的最新推荐方法推荐更多的利基物品,而又不会降低建议的准确性。因此,与迄今为止在文献中提出的也不需要额外的元数据的推荐方法相比,基于用法的方法更适合为用户提供针对特殊物品的准确推荐。

著录项

  • 作者

    Niemann Katja Kristina;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号