首页> 外文OA文献 >A contribution to continuous-time quadrature bandpass sigma-delta modulators for low-IF receivers
【2h】

A contribution to continuous-time quadrature bandpass sigma-delta modulators for low-IF receivers

机译:对低中频接收机连续时间正交带通sigma-delta调制器的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents the implementation of the continuous-time quadrature bandpass sigma-delta modulators (CT-QBP SDMs). CT-QBP SDMs is well suited for low-IF receivers due to some significant advantages over other implementations. Firstly, the possible design methodologies have been defined and compared. The proposed inverse method is desirable for the design of CT-QBP SDM. Starting from CT loop filter optimization, the equivalent noise shaping transfer function is finally calculated and its stability margin is estimated. Because of the optimization in the CT-domain, this method gives to designer lots of flexibilities for circuit design in CT domain, while decreasing circuit complexity and chip area. In order to estimate the modulator performances, the simulation method by Matlab code has been presented which is an extension of Delta-Sigma Toolbox. Secondly, the polyphase filter with capacitive feedforward summation have been proposed. The proposed topology is suited for low power and low voltage applications. Feedforward coefficients are obtained as the ratios of the feedforward capacitors to last integrating capacitor and the summation is implemented by feedforward capacitors in the last complex integrator, without extra active components. The proposed polyphase filters contains the conventional cross-couplings for moving poles to center frequency, and the proposed compensation cross-couplings for moving zeros caused by capacitive feedforward. Thirdly, the non-ideal effects of CT-QBP SDMs have been estimated and their compensation solutions have been proposed. Finite GBW of the amplifiers affect stability and frequency shifting to a wanted center frequency of the polyphase filters. In order to ensure the stability, the use of a lossy complex integrator is desirable. The deviation from the center frequency can be decreased by inserting the transconductors in the virtual ground nodes of the amplifiers. Excess loop delay seriously results in unstability and degradation of the SNR. In order to compensate its effect, the additional feedback DAC with unit delay and the feedforward complex compensation coefficient can be used. Mismatched loop delay of the real and imaginary paths makes an aliased noise power in the passband and results in SNR degradation. It can be completely compensated by using D-latches in the feedback paths and the excess loop delay compensation scheme. Clock jitter severely reduces the modulator performance. The degradation of the SNR caused by clock jitter depends on the number of the output bit transitions. In order to reduce the jitter-induced noise, an optimized noise shaping transfer function and modified feedback DAC analog waveforms can be applied. The mismatch of the unit elements in the multi-bit DAC bank causes a nonlinear error of the modulator. In order to reduce the nonlinearity, the first-order complex mismatch shaper have been proposed which is centered at any center frequency. Lastly, two design prototypes have been shown as examples; one is high resolution, medium bandwidth CT-QBP SDM for GSM/EDGE low-IF receiver, and the other is reconfigurable multi-mode wideband CT-QBP SDM for GPS/Galileo low-IF receiver. The test chips were designed in a 0.25 um CMOS technology. For GSM/EDGE application, the measurement results demonstrate a SFDR of 96.0 dB and an image rejection of 75.8 dB at 70 kHz and -3 dBFS input signal. The DR of 90.3 dB was achieved with a peak SNDR of 86.8 dB. The measured power dissipation is less than 2.7 mW at 1.8 V supply voltage. For GPS/Galileo application, the designed modulator achieved a peak SNDR of 52.9dB for GPS and 48.4 dB for Galileo application.
机译:这项工作介绍了连续时间正交带通sigma-delta调制器(CT-QBP SDM)的实现。由于CT-QBP SDM比其他实施方案具有一些明显的优势,因此非常适合于低IF接收器。首先,定义并比较了可能的设计方法。提出的反演方法是CT-QBP SDM设计的理想选择。从CT环路滤波器优化开始,最终计算出等效噪声整形传递函数,并估计其稳定裕度。由于在CT域中进行了优化,因此该方法为设计人员在CT域中进行电路设计提供了很多灵活性,同时降低了电路复杂性和芯片面积。为了估计调制器的性能,提出了通过Matlab代码进行仿真的方法,它是Delta-Sigma Toolbox的扩展。其次,提出了具有电容前馈求和的多相滤波器。提出的拓扑适用于低功率和低电压应用。获得前馈系数作为前馈电容器与最后一个积分电容器之比,并且总和由最后一个复杂积分器中的前馈电容器实现,而无需额外的有源组件。提出的多相滤波器包含用于将极移至中心频率的常规交叉耦合,以及用于将由电容前馈引起的零移动的补偿交叉耦合。第三,估计了CT-QBP SDM的非理想效果,并提出了补偿方案。放大器的有限GBW影响稳定性和将频率移至多相滤波器的所需中心频率。为了确保稳定性,需要使用有损复数积分器。通过将跨导体插入放大器的虚拟接地节点,可以减小与中心频率的偏差。过多的环路延迟会严重导致SNR不稳定和降级。为了补偿其影响,可以使用具有单位延迟的附加反馈DAC和前馈复数补偿系数。实路径和虚路径的环路延迟不匹配会在通带中产生混叠噪声功率,并导致SNR下降。通过在反馈路径中使用D锁存和过量环路延迟补偿方案,可以完全补偿它。时钟抖动严重降低了调制器性能。由时钟抖动引起的SNR下降取决于输出位转换的数量。为了减少抖动引起的噪声,可以应用优化的噪声整形传递函数和修改后的反馈DAC模拟波形。多位DAC组中单元元素的不匹配会导致调制器的非线性误差。为了减少非线性,已经提出了以任何中心频率为中心的一阶复失配整形器。最后,以两个设计原型为例。一种是用于GSM / EDGE低中频接收机的高分辨率,中带宽CT-QBP SDM,另一种是用于GPS / Galileo低中频接收机的可重构多模宽带CT-QBP SDM。测试芯片采用0.25 um CMOS技术设计。对于GSM / EDGE应用,测量结果表明在70 kHz和-3 dBFS输入信号下,SFDR为96.0 dB,镜像抑制为75.8 dB。 SNDR峰值为86.8 dB,DR达到90.3 dB。在1.8 V电源电压下测得的功耗小于2.7 mW。对于GPS /伽利略应用,所设计的调制器对于GPS达到了52.9dB的峰值SNDR,对于伽利略应用则达到了48.4 dB的峰值。

著录项

  • 作者

    Kim Song-Bok;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号