首页> 外文OA文献 >Polarization-optimized heterostructures with quaternary AlInGaN layers for novel group III nitride devices
【2h】

Polarization-optimized heterostructures with quaternary AlInGaN layers for novel group III nitride devices

机译:用于新型III族氮化物器件的具有四元AlInGaN层的极化优化异质结构

摘要

Owing to their unique material properties, group III nitrides are attractive for the application in devices, e.g. heterostructure field effect transistors (HFETs) and light-emitting diodes (LEDs). Group III nitrides exhibit an inherent macroscopic total polarization, which is the sum of the spontaneous polarization and the piezoelectric polarization. In a metal-polar heterostructure, in which a material with wider bandgap and larger absolute total polarization is deposited on GaN, the abrupt change of the polarization leads to fixed positive interface charges. As a consequence, a two-dimensional electron gas (2DEG) is formed in the GaN layer to compensate these charges. Such a 2DEG is widely exploited in HFETs, which are seen as possible candidates to replace conventional Si-based electronic devices in the power electronic sector. Sheet electron densities up to 3∙10^13 cm^-2 have been demonstrated. These large electron densities, however, result typically in transistors of depletion mode (d-mode) type. To allow for GaN-based HFETs which can be easily integrated in current power-switching circuit architectures, the realization of enhancement mode (e-mode) devices is of major interest.In the lighting sector, LEDs have reached a high level of maturity, which is manifested by large luminous efficacies and high device lifetimes. However, the inherent polarization in the nitrides results in an electric field in the InGaN/GaN multiple quantum well (MQW), which in turn leads to a spatial separation of electrons and holes. As a result, the internal quantum efficiency is reduced and the emission wavelength is drifting with LED current. Further, the polarization is considered to be one of the causes for the typical efficiency droop at higher currents. There is consequently significant scientific and technological interest to explore the possibility and the limits of engineering the polarization effects in electronic and optoelectronic devices. In this thesis, the method of polarization engineering with quaternary AlInGaN layers is studied. AlInGaN offers the highest possible flexibility in adjusting material properties independently, e.g. bandgap and lattice constant or strain state and polarization. While tensile strained AlInGaN on GaN exhibits a large total polarization, compressively strained layers feature a strongly reduced polarization. By changing the composition and, hence, the strain state, the polarization difference can be controlled.In the first part, a comprehensive study on the growth process by metal-organic vapor phase epitaxy (MOVPE) and on structural properties of AlInGaN is presented. Optimum reactor conditions for the growth of AlInGaN are identified. A wide composition range of AlInGaN layers grown on GaN is achieved, which results in a large range of strain conditions from high tensile strain, to the almost unstrained case for nearly lattice-matched compositions and finally compressive strain. While in the first and second case, a high crystal quality is achieved, in the latter case, an inferior quality is observed due to large In contents. To describe relaxation effects in AlInGaN layers with significant In content, a multi-layer model is developed.In the second part, polarization engineering is utilized to obtain both d- and e-mode HFETs. While d-mode behavior is achieved with tensile strained AlInGaN layers with a large total polarization, e-mode behavior is realized with compressively strained AlInGaN layers with low polarization. However, for compressively strained AlInGaN with larger In contents and, hence, degraded crystal quality, inferior electrical properties are observed. Improved e-mode HFET performance is obtained with almost lattice-matched AlInGaN barriers with low In and Al contents. High-polarization and low-polarization layers are combined to provide positive threshold voltage and simultaneously low parasitic sheet resistance, enabling higher drain current and large transconductance. In analogy with the n-channel HFETs, the method of polarization engineering is applied to p-channel HFETs with 2D hole gases (2DHGs). Despite the success of n-channel HFETs with 2DEGs, there are only sparse results on p-channel HFETs due to challenges on both the technology and material side. First, MOVPE nitrides feature a high n-type background doping. Second, the typical acceptor in GaN, Mg, exhibits a large ionization energy of several hundred meV. Third, the effective hole mass is one order of magnitude larger than the electron mass. To overcome these challenges, an AlInGaN backbarrier with a high total polarization is used for the generation of a polarization-induced 2DHG. Both d- and e-mode characteristics are shown and record performance figures for p-channel devices are reported. In the third part, improved LED structures with AlInGaN layers with variable polarization are investigated. First, conventional GaN barriers in a MQW are replaced by AlInGaN barriers. It is confirmed that by changing the polarization in the AlInGaN barrier, it is possible to influence the internal electric fields. A smaller polarization results in a decreased emission wavelength and in improved optical oscillator strength. The wavelength shift due to the quantum-confined Stark effect (QCSE) is found to depend on the AlInGaN composition. Finally, a novel concept for LEDs is introduced which utilizes the superior electrical properties of a 2DHG. An inversed p-n junction in a metal-polar layer stack is applied, which results in a reversed polarization. This is realized by using a 2DHG as a hole reservoir and as a current spreading layer at the bottom p-GaN side. With AlInGaN backbarriers featuring a high polarization, a large sheet hole density in the 2DHG is achieved. A proof of concept is provided by the demonstration of prototype devices with stable emission wavelength.
机译:由于其独特的材料特性,第III族氮化物对于器件中的应用是有吸引力的。异质结构场效应晶体管(HFET)和发光二极管(LED)。 III族氮化物表现出固有的宏观总极化,其是自发极化和压电极化的总和。在其中具有更宽的带隙和更大的绝对总极化的材料沉积在GaN上的金属极性异质结构中,极化的突变会导致固定的正界面电荷。结果,在GaN层中形成二维电子气(2DEG)以补偿这些电荷。这种2DEG在HFET中得到了广泛的应用,HFET被认为是替代电力电子领域中传统的基于Si的电子设备的候选者。已经证明了片状电子密度高达3∙10 ^ 13 cm ^ -2。然而,这些大的电子密度通常导致耗尽型(d-模式)型晶体管。为了能够轻松将GaN基HFET集成到当前的电源开关电路架构中,增强模式(e-mode)器件的实现倍受关注,在照明领域,LED达到了很高的成熟度,发光效率高和设备使用寿命长证明了这一点。但是,氮化物的固有极化会在InGaN / GaN多量子阱(MQW)中产生电场,进而导致电子与空穴的空间分离。结果,内部量子效率降低,并且发射波长随LED电流漂移。此外,极化被认为是在较高电流下典型效率下降的原因之一。因此,探索工程化电子和光电子器件中的极化效应的可能性和局限性具有重大的科学技术兴趣。本文研究了四元AlInGaN层的极化工程方法。 AlInGaN在独立调节材料特性(例如,单晶硅)方面提供了最大的灵活性。带隙和晶格常数或应变状态和极化。 GaN上的拉伸应变AlInGaN表现出较大的总极化,而压缩应变层的极化却大大降低。通过改变成分,从而改变应变状态,可以控制极化差。第一部分,对金属有机气相外延(MOVPE)的生长过程以及AlInGaN的结构特性进行了全面的研究。确定了用于AlInGaN生长的最佳反应器条件。实现了在GaN上生长的AlInGaN层的广泛组成范围,这导致了从高拉伸应变到几乎晶格匹配的成分几乎没有应变的情况以及最终的压缩应变的大范围应变条件。在第一种情况和第二种情况下,可以获得较高的晶体质量,而在后一种情况下,由于In含量高,因此观察到的质量较差。为了描述In含量高的AlInGaN层中的弛豫效应,建立了一个多层模型。第二部分,利用极化工程技术获得d和H模式的HFET。尽管具有大总极化的拉伸应变AlInGaN层可实现d模式行为,而具有低极化的压缩应变AlInGaN层可实现e模式行为。然而,对于具有较大In含量并因此降低的晶体质量的压缩应变AlInGaN,观察到较差的电性能。使用几乎具有低In和Al含量的晶格匹配的AlInGaN势垒,可以获得改进的e型HFET性能。高极化层和低极化层结合在一起可提供正阈值电压,同时提供低寄生薄层电阻,从而实现更高的漏极电流和较大的跨导。与n沟道HFET相似,极化工程方法被应用于具有2D空穴气体(2DHG)的p沟道HFET。尽管具有2DEG的n沟道HFET取得了成功,但由于技术和材料方面的挑战,p沟道HFET的结果很少。首先,MOVPE氮化物具有高n型本底掺杂。其次,GaN中的典型受体Mg表现出数百meV的大电离能。第三,有效空穴质量比电子质量大一个数量级。为了克服这些挑战,将具有高总极化的AlInGaN背势垒用于产生极化诱导的2DHG。显示了d模式和e模式特性,并报告了p通道设备的记录性能数据。在第三部分中,研究了具有可变偏振AlInGaN层的改进的LED结构。第一,MQW中的常规GaN势垒被AlInGaN势垒取代。已经确认,通过改变AlInGaN势垒中的极化,可以影响内部电场。较小的偏振导致减小的发射波长并提高光学振荡器的强度。发现由于量子限制的斯塔克效应(QCSE)引起的波长偏移取决于AlInGaN成分。最后,介绍了一种利用2DHG优异电性能的LED新概念。在金属-极性层堆叠中施加反向的p-n结,这导致反向的极化。这是通过使用2DHG作为空穴存储层和底部p-GaN侧的电流扩展层来实现的。使用具有高极化特性的AlInGaN背势垒,可以在2DHG中实现较大的薄板孔密度。具有稳定发射波长的原型设备的演示提供了概念验证。

著录项

  • 作者

    Reuters Benjamin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 入库时间 2022-08-20 20:29:08

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号