首页> 外文OA文献 >Flächige Tragstrukturen aus textilbewehrtem Beton : Experimentelle und numerische Charakterisierung des Tragverhaltens, Bemessung und Herstellungsmethodik
【2h】

Flächige Tragstrukturen aus textilbewehrtem Beton : Experimentelle und numerische Charakterisierung des Tragverhaltens, Bemessung und Herstellungsmethodik

机译:纤维增强混凝土制成的扁平承重结构:承重性能的试验和数值表征,设计和制造方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Textile reinforced concrete (TRC) is an innovative composite material consisting of a fine grained concrete and a non-corroding textile reinforcement made of high strength carbon or alkali-resistant glass fibers. Due to the non-corroding textile fabrics thin-walled, light-weight structures can be constructed with TRC. In Germany in two collaborative research centers, one at RWTH Aachen University and the other at the Technical University Dresden, the new composite material was systematically investigated in recent years. Based on interdisciplinary research results experimental and numerical methods have been developed for material characterization giving a deeper insight in the complex material behavior of the new composite material.The high application potential of TRC in the construction industry has been demonstrated by various application examples ranging from large-sized facade elements, self-supporting sandwich panels to pedestrian bridges. Furthermore, the innovative composite has a high application potential in the field of strengthening of existing steel reinforced concrete structures. The material characteristics of TRC are also particularly attractive for filigree concrete shell structures as the flexible textile fabrics can be easily adapted to complex curved geometries. Due to their low weight TRC structures can be efficiently fabricated as precast elements and mounted on site. Compared to conventional steel reinforced shell structures using labor-intensive formworks the technical challenges arising in the context of TRC constructions shift to lifting, adjusting and coupling of the individual precast elements.As the dimensioning approaches developed within the collaborative research center mainly focus on linear structural elements such as truss and beam elements they had to be adopted to spatial structures and general loading conditions. Therefore a dimensioning approach for TRC shell structures with combined normal and bending loading has been developed. The underlying n-m interaction diagram is based on the cross-sectional strength characteristic of the composite. The nonlinear load-bearing behavior of TRC shell structures including stress redistribution has been investigated with a formulated anisotropic damage model. Starting point of the developed calibration procedure for the material model is the characteristic strain-hardening response of the composite material measured in the tensile tests. In order to provide a reproducible material characterization suitable test setups for TRC are needed. The developed experimental and numerical concepts are described in detail and exemplified for two TRC shell structures recently constructed at RWTH Aachen University. Furthermore, the fabrication technique applied for TRC shell structures is described differing strongly from the approaches used for conventional steel reinforced concrete. Especially the high positional accuracy within the cross-section of the filigree TRC shells requires innovative solutions.
机译:纺织增强混凝土(TRC)是一种创新的复合材料,由细颗粒混凝土和由高强度碳或耐碱玻璃纤维制成的耐腐蚀纺织增强材料组成。由于纺织面料不易腐蚀,因此可以使用TRC构造轻质结构。在德国,有两个合作研究中心,一个在亚琛工业大学,另一个在德累斯顿工业大学,最近几年对这种新的复合材料进行了系统的研究。基于跨学科的研究结果,开发了用于材料表征的实验和数值方法,从而使人们对新型复合材料的复杂材料性能有了更深入的了解。TRC在建筑行业的巨大应用潜力已通过各种不同的应用实例得到了证明。尺寸的外立面元素,自支撑夹层板到人行天桥。此外,这种创新的复合材料在加强现有的钢筋混凝土结构方面具有很高的应用潜力。 TRC的材料特性对于花丝混凝土壳体结构也特别有吸引力,因为柔性纺织面料可以轻松适应复杂的弯曲几何形状。由于其重量轻,可将TRC结构有效地制造为预制元件并现场安装。与使用劳动密集型模板的传统钢增强壳结构相比,在TRC结构中出现的技术挑战转向单个预制元件的提升,调整和耦合。由于在协作研究中心内开发的尺寸标注方法主要集中于线性结构诸如桁架和梁单元之类的单元必须用于空间结构和一般荷载条件。因此,已经开发出具有法向载荷和弯曲载荷相结合的TRC壳体结构的尺寸确定方法。下方的n-m相互作用图基于复合材料的横截面强度特性。利用建立的各向异性损伤模型研究了TRC壳体结构的非线性承载行为,包括应力再分布。针对材料模型开发的校准程序的出发点是在拉伸试验中测得的复合材料的特征应变硬化响应。为了提供可再现的材料表征,需要针对TRC的合适测试设置。对于最近在亚琛工业大学(RWTH Aachen University)建造的两种TRC壳结构进行了详细描述并举例说明了开发的实验和数值概念。此外,描述了用于TRC壳体结构的制造技术与传统的钢增强混凝土所使用的方法有很大不同。特别是在花丝TRC外壳横截面内的高位置精度要求创新的解决方案。

著录项

  • 作者

    Scholzen Alexander;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号