首页> 外文OA文献 >A Machine Learning Approach for Identifying and Classifying Faults in Wireless Sensor Networks
【2h】

A Machine Learning Approach for Identifying and Classifying Faults in Wireless Sensor Networks

机译:一种识别和分类无线传感器网络中故障的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless Sensor Network (WSN) deployment experiences show that collected data is prone to be faulty. Faults are due to internal and external influences, such as calibration, low battery, environmental interference and sensor aging. However, only few solutions exist to deal with faulty sensory data in WSN. We develop a statistical approach to detect and identify faults in a WSN. In particular, we focus on the identification and classification of data and system fault types as it is essential to perform accurate recovery actions. Our method uses Hidden Markov Models (HMMs) to capture the fault-free dynamics of an environment and dynamics of faulty data. It then performs a structural analysis of these HMMs to determine the type of data and system faults affecting sensor measurements. The approach is validated using real data obtained from over one month of samples from motes deployed in an actual living lab.
机译:无线传感器网络(WSN)部署经验表明,收集的数据容易出错。故障是由于内部和外部因素引起的,例如校准,电池电量低,环境干扰和传感器老化。但是,只有很少的解决方案可以处理WSN中的错误感官数据。我们开发了一种统计方法来检测和识别WSN中的故障。特别是,我们专注于数据和系统故障类型的识别和分类,因为执行准确的恢复操作至关重要。我们的方法使用隐马尔可夫模型(HMM)来捕获环境的无故障动态和故障数据的动态。然后,它对这些HMM进行结构分析,以确定影响传感器测量的数据类型和系统故障。该方法已使用从一个月的样本中获得的真实数据进行了验证,这些样本来自实际生活实验室中部署的微粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号