首页> 外文OA文献 >Optimized Neural Network Using Differential Evolutionary and Swarm Intelligence Optimization Algorithms for RF Power Prediction in Cognitive Radio Network: A Comparative study
【2h】

Optimized Neural Network Using Differential Evolutionary and Swarm Intelligence Optimization Algorithms for RF Power Prediction in Cognitive Radio Network: A Comparative study

机译:差分无线电和群体智能优化算法的神经网络在认知无线电网络中的射频功率预测

摘要

Cognitive radio (CR) technology has emerged asuda promising solution to many wireless communication problemsudincluding spectrum scarcity and underutilization. The a prioryudknowledge of Radio Frequency (RF) power (primary signals and/udor interfering signals plus noise) in the channels to be exploited byudCR is of paramount importance. This will enable the selection ofudchannel with less noise among idle (free) channels. ComputationaludIntelligence (CI) techniques can be applied to these scenarios toudpredict the required RF power in the available channels to achieveudoptimum Quality of Service (QoS). In this paper, we developed audtime domain based optimized Artificial Neural Network (ANN)udmodel for the prediction of real world RF power within the GSMud900, Very High Frequency (VHF) and Ultra High Frequencyud(UHF) TV bands. The application of the models produced wasudfound to increase the robustness of CR applications, specificallyudwhere the CR had no prior knowledge of the RF power relatedudparameters such as signal to noise ratio, bandwidth and bituderror rate. The models used, implemented a novel and innovativeudinitial weight optimization of the ANN’s through the use ofuddifferential evolutionary and swarm intelligence algorithms. Thisudwas found to enhance the accuracy and generalization of theudANN model. For this problem, DE/best/1/bin was found to yielduda better performance as compared with the other algorithmsudimplemented.
机译:认知无线电(CR)技术已经成为解决许多无线通信问题的有希望的解决方案,包括频谱稀缺和利用率不足。对 udCR所利用的信道中的射频(RF)功率(主要信号和/或干扰信号加噪声)的先验知识是至关重要的。这将使在空闲(空闲)通道中选择具有较少噪声的 udchannel。可以将计算 udIntelligence(CI)技术应用于这些方案,以 u预测可用信道中所需的RF功率,以实现 udofum的服务质量(QoS)。在本文中,我们开发了基于 udtime时域的优化人工神经网络(ANN) udmodel,用于预测GSM ud900,甚高频(VHF)和超高频 ud(UHF)电视中的现实世界RF功率乐队。发现所产生模型的应用以提高CR应用的鲁棒性,特别是在CR没有与RF功率有关的参数如信噪比,带宽和比特误码率的先验知识的情况下。这些模型通过使用 uddifferential进化和群体智能算法,对ANN进行了新颖且创新的 udinitial权重优化。发现这可以提高udANN模型的准确性和通用性。对于此问题,发现DE / best / 1 / bin比其他实现的算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号