首页> 外文OA文献 >Hierarchical Classification of Scientific Taxonomies with Autonomous Underwater Vehicles
【2h】

Hierarchical Classification of Scientific Taxonomies with Autonomous Underwater Vehicles

机译:水下自动航行器的科学分类法的分层分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autonomous Underwater Vehicles (AUVs) have catalysed a significant shift in the way marine habitats are studied. It is now possible to deploy an AUV from a ship, and capture tens of thousands of georeferenced images in a matter of hours. There is a growing body of research investigating ways to automatically apply semantic labels to this data, with two goals. The task of manually labelling a large number of images is time consuming and error prone. Further, there is the potential to change AUV surveys from being geographically defined (based on a pre-planned route), to permitting the AUV to adapt the mission plan in response to semantic observations.udThis thesis focusses on frameworks that permit a unified machine learning approach with applicability to a wide range of geographic areas, and diverse areas of interest for marine scientists. This can be addressed through the use of hierarchical classification; in which machine learning algorithms are trained to predict not just a binary or multi-class outcome, but a hierarchy of related output labels which are not mutually exclusive, such as a scientific taxonomy.udIn order to investigate classification on larger hierarchies with greater geographic diversity, the BENTHOZ-2015 data set was assembled as part of a collaboration between five Australian research groups. Existing labelled data was re-mapped to the CATAMI hierarchy, in total more than 400,000 point labels, conforming to a hierarchy of around 150 classes.udThe common hierarchical classification approach of building a network of binary classifiers was applied to the BENTHOZ-2015 data set, and a novel application of Bayesian Network theory and probability calibration was used as a theoretical foundation for the approach, resulting in improved classifier performance. This was extended to a more complex hidden node Bayesian Network structure, which permits inclusion of additional sensor modalities, and tuning for better performance in particular geographic regions.
机译:自主水下航行器(AUV)促进了海洋生境研究方式的重大转变。现在可以从船上部署AUV,并在几小时内捕获成千上万的地理参考图像。越来越多的研究机构开始研究将语义标签自动应用于此数据的方法,这有两个目标。手动标记大量图像的任务既费时又容易出错。此外,有可能将AUV调查从地理定义(基于预先计划的路线)更改为允许AUV根据语义观察来调整任务计划。 ud本论文着眼于允许使用统一机器的框架学习方法,适用于广泛的地理区域以及海洋科学家感兴趣的不同领域。这可以通过使用层次分类来解决。其中训练了机器学习算法,以预测不仅是二进制或多类结果,而且还预测不互斥的相关输出标签的层次结构,例如科学分类法。 ud为了研究具有较大地理分布的较大层次结构的分类多样性,BENTHOZ-2015数据集是五个澳大利亚研究小组之间合作的一部分。现有的标记数据被重新映射到CATAMI层次结构,总共超过40万个点标签,符合大约150个类的层次结构。 ud将二进制分类器网络的常见层次结构分类方法应用于BENTHOZ-2015数据集,贝叶斯网络理论和概率校准的新应用被用作该方法的理论基础,从而提高了分类器的性能。这已扩展到更复杂的隐藏节点贝叶斯网络结构,该结构允许包含其他传感器模式,并进行调整以在特定地理区域中获得更好的性能。

著录项

  • 作者

    Bewley Michael Stuart;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号