首页> 外文OA文献 >Phoneme and Sub-Phoneme T-Normalization for Text-Dependent Speaker Recognition
【2h】

Phoneme and Sub-Phoneme T-Normalization for Text-Dependent Speaker Recognition

机译:音素和子音素T归一化,用于文本相关的说话人识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Test normalization (T-Norm) is a score normalization technique that is regularly and successfully applied in the context of text-independent speaker recognition. It is less frequently applied, however, to text-dependent or textprompted speaker recognition, mainly because its improvement in this context is more modest. In this paper we present a novel way to improve the performance of T-Norm for text-dependent systems. It consists in applying score TNormalization at the phoneme or sub-phoneme level instead of at the sentence level. Experiments on the YOHO corpus show that, while using standard sentence-level T-Norm does not improve equal error rate (EER), phoneme and sub-phoneme level T-Norm produce a relative EER reduction of 18.9% and 20.1% respectively on a state-of-the-art HMM based textdependent speaker recognition system. Results are even better for working points with low false acceptance rates.
机译:测试归一化(T-Norm)是一种评分归一化技术,已在与文本无关的说话人识别中定期成功地应用。但是,它很少用于依赖于文本或提示文本的说话人识别,这主要是因为它在此方面的改进较为适度。在本文中,我们提出了一种新颖的方式来提高文本相关系统的T-Norm性能。它包括在音素或子音素级别而不是句子级别应用得分TNormalization。 YOHO语料库上的实验表明,虽然使用标准句子级T-Norm不能提高均等错误率(EER),但音素级和副音素级T-Norm的相对EER降低分别为18.9%和20.1%。基于HMM的最先进的基于文本的说话者识别系统。对于错误接受率低的工作点,结果甚至更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号