首页> 外文期刊>Audio, Speech, and Language Processing, IEEE/ACM Transactions on >Speaker and Channel Factors in Text-Dependent Speaker Recognition
【24h】

Speaker and Channel Factors in Text-Dependent Speaker Recognition

机译:文本相关的说话人识别中的说话人和频道因素

获取原文
获取原文并翻译 | 示例

摘要

We reformulate joint factor analysis so that it can serve as a feature extractor for text-dependent speaker recognition. The new formulation is based on left-to-right modeling with tied mixture HMMs and it is designed to deal with problems such as the inadequacy of subspace methods in modeling speaker-phrase variability, UBM mismatches that arise as a result of variable phonetic content, and the need to exploit text-independent resources in text-dependent speaker recognition. We pass the features extracted by factor analysis to a trainable backend which plays a role analogous to that of PLDA in the i-vector/PLDA cascade in text-independent speaker recognition. We evaluate these methods on a proprietary dataset consisting of English and Urdu passphrases collected in Pakistan. By using both text-independent data and text-dependent data for training purposes and by fusing results obtained with multiple front ends at the score level, we achieved equal error rates of around 1.3% and 2% on the English and Urdu portions of this task.
机译:我们重新制定了联合因素分析,以便它可以用作与文本相关的说话人识别的特征提取器。新公式基于带有混合HMM的从左到右建模,旨在处理以下问题:子空间方法在建模说话人短语变异性方面的不足,由于语音内容变化而引起的UBM不匹配,以及在与文本相关的说话人识别中开发与文本无关的资源的需求。我们将通过因子分析提取的特征传递给可训练的后端,该后端的作用类似于i-vector / PLDA级联中的PLDA,在独立于文本的说话者识别中。我们在由巴基斯坦收集的英语和乌尔都语密码短语组成的专有数据集上评估这些方法。通过将与文本无关的数据和与文本相关的数据用于训练目的,并融合在分数级别上从多个前端获得的结果,我们在此任务的英语和乌尔都语部分上获得了大约1.3%和2%的相等错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号