首页> 外文OA文献 >Analysis of Meshfree Methods for Lagrangian Fluid-Structure Interaction
【2h】

Analysis of Meshfree Methods for Lagrangian Fluid-Structure Interaction

机译:拉格朗日流固耦合的无网格方法分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation a new numerical method for solving Fluid-Structure Interaction (FSI) problems in a Lagrangian framework is developed, where solids of different constitutive laws can suffer very large deformations and fluids are considered to be newtonian and incompressible. For that, we first introduce a meshless discretization based on local maximum-entropy interpolants. This allows to discretize a spatial domain with no need of tessellation, avoiding the mesh limitations. Later, the Stokes flow problem is studied. The Galerkin meshless method based on a max-ent scheme for this problem suffers from instabilities, and therefore stabilization techniques are discussed and analyzed. An unconditionally stable method is finally formulated based on a Douglas-Wang stabilization. Then, a Langrangian expression for fluid mechanics is derived. This allows us to establish a common framework for fluid and solid domains, such that interaction can be naturally accounted. The resulting equations are also in the need of stabilization, what is corrected with an analogous technique as for the Stokes problem. The fully Lagrangian framework for fluid/solid interaction is completed with simple point-to-point and point-to-surface contact algorithms. The method is finally validated, and some numerical examples show the potential scope of applications.
机译:本文提出了一种新的数值方法,用于求解拉格朗日框架中的流固耦合问题,其中不同本构律的固体会发生很大的变形,并且流体被认为是牛顿的且不可压缩的。为此,我们首先介绍基于局部最大熵内插值的无网格离散化。这允许在不需要镶嵌的情况下离散空间域,从而避免了网格限制。后来,研究了斯托克斯流问题。基于max-ent方案的Galerkin无网格方法存在不稳定的问题,因此对稳定技术进行了讨论和分析。最终基于道格拉斯-旺稳定化公式制定了无条件稳定方法。然后,导出了流体力学的朗格朗日表达式。这使我们能够为流体域和固体域建立通用框架,从而可以自然地考虑相互作用。生成的方程式也需要稳定,可以使用类似于斯托克斯问题的类似技术对其进行校正。完整的拉格朗日流体/固体相互作用框架通过简单的点对点和点对表面接触算法完成。该方法最终得到验证,并且一些数值示例表明了其潜在的应用范围。

著录项

  • 作者

    Urrecha Espluga Miguel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号