首页> 外文OA文献 >Desarrollo de estructuras nanofotonicas de campo cercano para intensificacion localizada de luz en celulas solares de banda intermedia - Near-field nanophotonic structures for localized light enhancement in intermediate band solar cells
【2h】

Desarrollo de estructuras nanofotonicas de campo cercano para intensificacion localizada de luz en celulas solares de banda intermedia - Near-field nanophotonic structures for localized light enhancement in intermediate band solar cells

机译:用于中频带太阳能电池局部光增强的近场纳米光子结构的发展-用于中频带太阳能电池局部光增强的近场纳米光子结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption
机译:该博士论文探讨了近场光学技术可以为光伏技术带来的一些可能性,特别是量子点中带太阳能电池(QD-IBSC)。我们的主要重点是分析优化单个散射粒子附近产生的电场分布,以便在其周围的光伏介质中产生最大可能的吸收增强。近场散射结构也已经在实验室中制造出来,从而允许将先前研究的理论概念应用于实际设备。我们从研究静电散射状态开始,该状态仅适用于亚波长尺寸的粒子。在这种情况下,发现金属纳米球体由于其强大的等离子体共振,可以在其附近的材料上产生约两个数量级的吸收增强。这种共振的频率可以根据粒子的形状进行调整,从而使我们能够将其与中带材料的最佳跃迁能相匹配。由于这些金属纳米粒子(MNP)将插入到电池光伏介质内部,因此应在它们的表面覆盖一层薄的绝缘层,以防止其表面发生电子-空穴复合。然后,使用在Mathematica7.0中实现的分析性变量分离方法,对这种分析进行概括,以计算任何大小和材料的球体的散射。该代码允许研究波长大小的粒子(介观状态)的散射特性,并且已证明在这种状态下,介电球体的性能优于金属。从这种介电球体散射的光强度可以比入射强度高两个数量级,并且可以通过改变粒子的几何形状和/或材料以几种方式对粒子前面的焦点区域进行成形。在该博士中还进行了实验工作,以在实践中实施在亚波长MNP分析中研究的概念。开发了一种湿涂法,以在几种材料(例如硅片,非晶硅膜,砷化镓和玻璃)的表面上自组装规则排列的胶体MNP阵列。已经进行了一系列的热和化学测试,显示出纳米颗粒可以嵌入到光伏介质中的处理方式。然后将MNP阵列插入非晶硅介质中,以研究其等离子体近场增强对材料吸收光谱的影响。在这些实验中构建的MNP的自组装阵列激发了使用胶体量子点(CQD)制造IBSC的新策略。可以使用类似于为胶体MNP图案化开发的程序,将此类CQD沉积在自组装单层中。与通过Stranski-Krastanov方法外延生长的常规点相比,使用CQD形成中间带具有几个重要的实践和物理优势。此外,这提供了一种快速而廉价的方法来构图QD和MNP的二进制阵列,这是本文理论部分所设想的,其中MNP充当天线,将光聚焦在QD中,从而提高了QD和MNP的吸收率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号