Fast ignition is a new scheme in laser fusion, in which higher energy gain with a smaller laser pulse energy is expected. A cone target has been introduced for realizing higher coupling efficiency. At ILE, Osaka University, a laser with four beams and a total output of 10 kJ ps−1, laser for fast ignition experiment (LFEX), has been constructed and we have carried out an integrated experiment with one beam of the LFEX. Through experiments it was found that the coupling efficiency is degraded when the laser pre-pulse is not sufficiently small. Namely, the main pulse is absorbed in the long-scale pre-plasma produced by the pre-pulse and the hot electron energy is higher than that for a clean pulse. Furthermore, the distance between the hot electron source and the core plasma is large. Hence, we are exploring how to overcome the pre-pulse effects on the cone target.udIn this paper it is proposed that a thin foil covers the laser entrance of the cone to mitigate the pre-plasma and a double cone reduces the loss of high-energy electrons from the side wall of the cone. The simulations indicate that a higher coupling efficiency is expected for the double cone target with a thin foil at the laser entrance. Namely, the pre-pulse will be absorbed by the foil and the electromagnetic fields generated on the surface of the inner cone will confine high-energy electrons.
展开▼