首页> 外文OA文献 >Dynamical Disorder and Self-Correlation in the Characterization of Nonlinear Systems. Application to Deterministic Chaos.
【2h】

Dynamical Disorder and Self-Correlation in the Characterization of Nonlinear Systems. Application to Deterministic Chaos.

机译:非线性系统表征中的动态无序和自相关。在确定性混沌中的应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new methodology to characterize nonlinear systems is described. It is based on the measurement over the time series of two quantities: the "Dynamical order" and the "Self-correlation". The averaged "Scalar" and "Perpendicular" products are introduced to measure these quantities. While this approach can be applied to general nonlinear systems, the aim of this work is to focus on the characterization and modeling of chaotic systems. In order to illustrate the method, applications to a two-dimensional chaotic system and the modeling of real telephony traffic series are presented. Three important aspects are discussed: the use of the averaged "Scalar" product as supplement of the "Lyapunov exponent", the use of the averaged "Perpendicular" product as a refinement of the "Mutual information" and the reduction of m-dimensional systems to the study of only one dimension. This new conceptual framework introduces a perspective to characterize real and theoretical processes with a unifying method, irrespective of the system classification.
机译:描述了表征非线性系统的新方法。它基于对两个量的时间序列的测量:“动态阶数”和“自相关”。引入平均的“标量”和“垂直”乘积以测量这些数量。尽管这种方法可以应用于一般的非线性系统,但这项工作的目的是着重于混沌系统的表征和建模。为了说明该方法,提出了在二维混沌系统中的应用以及真实电话业务序列的建模。讨论了三个重要方面:使用平均的“标量”乘积作为“ Lyapunov指数”的补充,使用平均的“垂直”乘积作为“互信息”的细化以及减少m维系统只能进行一维研究。这个新的概念框架引入了一种视角,可以用统一的方法来表征实际和理论过程,而与系统分类无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号