首页> 外文OA文献 >Polynomial approximation using particle swarm optimization of lineal enhanced neural networks with no hidden layers.
【2h】

Polynomial approximation using particle swarm optimization of lineal enhanced neural networks with no hidden layers.

机译:使用无隐藏层的线性增强神经网络的粒子群优化进行多项式逼近。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.
机译:本文提出了有关一种新的神经网络体系结构的一些想法,可以在处理模式时将其与泰勒分析进行比较。这种体系结构是基于具有轴突-轴突体系结构的线性激活功能。两个神经元之间的生物轴突连接被定义为另一个第三神经元的输出给定的连接中的权重。这个想法可以在所谓的增强神经网络中实现,其中使用了两个多层感知器。第一个将输出第二个MLP用于计算所需输出的权重。即使具有线性激活函数,这种神经网络也具有通用逼近性质。合作和竞争策略之间存在明显的区别。前者基于群体殖民地,其中所有个体都共享有关目标的知识,以便将此类信息传递给其他个体以获得最佳解决方案。后者是基于遗传模型的,也就是说,个体可以死亡,并且结合活着的信息创建新的个体。或基于分子/细胞行为将信息从一种结构传递到另一种结构。应用基于群体的模型获得神经网络,并使用粒子群算法训练网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号