首页> 外文期刊>Fuzzy sets and systems >Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization
【24h】

Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization

机译:借助粒子群算法实现基于多项式的径向基函数神经网络(P-RBF NN)

获取原文
获取原文并翻译 | 示例

摘要

In this study, we design polynomial-based radial basis function neural networks (P-RBF NNs) based on a fuzzy inference mechanism. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient of the underlying clustering method) are optimized by means of the particle swarm optimization. The proposed P-RBF NNs dwell upon structural findings about training data that are expressed in terms of a partition matrix resulting from fuzzy clustering in this case being the fuzzy C-means (FCM). The network is of functional nature as the weights between the hidden layer and the output are some polynomials. The use of the polynomial weights becomes essential in capturing the nonlinear nature of data encountered in regression or classification problems. From the perspective of linguistic interpretation, the proposed network can be expressed as a collection of "if-then" fuzzy rules. The architecture of the networks discussed here embraces three functional modules reflecting the three phases of input-output mapping realized in rule-based architectures, namely condition formation, conclusion creation, and aggregation. The proposed classifier is applied to some synthetic and machine learning datasets, and its results are compared with those reported in the previous studies.
机译:在这项研究中,我们基于模糊推理机制设计基于多项式的径向基函数神经网络(P-RBF NN)。基本的设计参数(包括基本聚类方法的学习率,动量系数和模糊化系数)通过粒子群算法进行优化。提出的P-RBF神经网络基于关于训练数据的结构性发现,这些结构性数据是根据由模糊聚类(在这种情况下为模糊C均值(FCM))得出的分区矩阵表示的。网络具有功能性,因为隐藏层和输出之间的权重是一些多项式。多项式权重的使用对于捕获回归或分类问题中遇到的数据的非线性性质至关重要。从语言解释的角度来看,所提出的网络可以表示为“如果-则”模糊规则的集合。这里讨论的网络的体系结构包含三个功能模块,这些功能模块反映了在基于规则的体系结构中实现的输入-输出映射的三个阶段,即条件形成,结论创建和聚合。提出的分类器应用于一些综合和机器学习数据集,并将其结果与以前的研究报告进行了比较。

著录项

  • 来源
    《Fuzzy sets and systems》 |2011年第1期|p.54-77|共24页
  • 作者单位

    Department of Electrical Engineering, University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea;

    Department of Electrical Engineering, University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea;

    Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Canada T6R 2G7,Systems Science Institute, Polish Academy of Sciences Warsaw, Poland;

    Spatial Information Research Team, Telematics & USN Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    polynomial neural networks; radial basis function neural networks; pattern classification; fuzzy clustering; particle swarm optimization;

    机译:多项式神经网络径向基函数神经网络模式分类模糊聚类粒子群优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号