机译:借助粒子群算法实现基于多项式的径向基函数神经网络(P-RBF NN)
Department of Electrical Engineering, University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea;
Department of Electrical Engineering, University of Suwon, Hwaseong-si, Gyeonggi-do, South Korea;
Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Canada T6R 2G7,Systems Science Institute, Polish Academy of Sciences Warsaw, Poland;
Spatial Information Research Team, Telematics & USN Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, South Korea;
polynomial neural networks; radial basis function neural networks; pattern classification; fuzzy clustering; particle swarm optimization;
机译:基于K-均值聚类的多项式径向基函数神经网络(pRBF NN)的设计,借助粒子群优化和微分进化
机译:基于多项式的径向基函数神经网络(P-RBF NNs)及其在模式分类中的应用
机译:基于多项式的径向基函数神经网络(P-RBF NNs)及其在模式分类中的应用
机译:基于粒子群优化设计的基于模糊聚类的多项式径向基函数神经网络(p-RBF NNs)分类器
机译:使用反向传播和径向基函数人工神经网络概述天线的合成和优化。
机译:体育效应评价模型:径向基函数粒子群优化神经网络(RBFNN-PSO)的应用
机译:基于径向基函数和粒子群算法的自适应神经网络预测汇率