首页> 外文OA文献 >Video analysis based vehicle detection and tracking using an MCMC sampling framework
【2h】

Video analysis based vehicle detection and tracking using an MCMC sampling framework

机译:使用MCMC采样框架进行基于视频分析的车辆检测和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
机译:本文介绍了一种通过分析从车载摄像机获得的单眼图像来进行车辆检测和跟踪的概率方法。该方法旨在解决交通环境中使用的传统粒子过滤方法的主要缺点,即基于重要性采样的贝叶斯方法。当特征空间的维数增加时,这些方法无法很好地缩放,这在跟踪多个对象时会产生明显的限制。备选地,所提出的方法基于马尔可夫链蒙特卡洛(MCMC)方法,该方法允许对特征空间进行有效采样。该方法在跟踪器的运动模型和观察模型中都做出了重要贡献。实际上,与文献中通常基于外观或模板匹配的观测模型的文献中基于粒子过滤器的跟踪方法相反,本研究引入了一种将外观分析与运动视差信息相结合的似然模型。关于运动模型,基于马尔可夫随机场(MRF)定义了一种新的交互处理方法,该方法可以处理车辆轨迹中可能的相互依赖关系。对于车辆检测,该方法依赖于使用支持向量机(SVM)的监督分类阶段。在这一领域的贡献是双重的。首先,基于同心矩形中梯度方向的分析,确定一个新的描述符。与传统描述符相比,此描述符所涉及的特征空间要小得多,而传统描述符对于实时应用而言太昂贵了。第二,生成新的车辆图像数据库以训练SVM并将其公开。事实证明,所提出的车辆检测和跟踪方法优于现有方法,并能够成功处理测试序列中的挑战性情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号