首页> 外文OA文献 >Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows
【2h】

Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

机译:具有列相关行的大型线性程序的同时行生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now toudthe best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate the proposed approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.
机译:在本文中,我们开发了一种行和列同时生成算法,该算法可以应用于一般类别的大规模线性规划问题。这些问题通常是在线性编程公式具有多个变量的情况下出现的。这些公式的定义属性是一组链接约束,它们要么太多以至于不能直接包含在公式中,要么只有在所有变量都明确生成的情况下,才能确定完整的一组链接约束。由于列和行之间的这种依赖性,我们将这类线性程序称为列相关行的问题。为了解决这些问题,我们需要能够在有效的解决方案中即时生成列和行。我们强调,生成的行是结构性约束,并且将我们的工作与分支机构切割和价格框架区分开来。我们首先描述提出的列和行生成算法的基本假设。这些假设已经足够笼统,涵盖了迄今为止文献中所研究的列相关行的所有问题。然后,我们详细介绍了一组定价子问题,这些子问题在建议的列和行生成算法中使用。随后是关于算法最优性的正式讨论。为了说明所提出的方法,本文通过将所提出的框架应用于多级切削料和覆盖问题的二次集来得出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号