首页> 外文OA文献 >Using Surface Sensitivity for Adjoint Aerodynamic Optimisation of Shock Control Bumps
【2h】

Using Surface Sensitivity for Adjoint Aerodynamic Optimisation of Shock Control Bumps

机译:使用表面灵敏度进行减震器冲击的伴随空气动力学优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this research is to use the surface sensitivity to aid the design and placement of flow control devices and to develop a new and efficient method of calculating the surface sensitivity using the mesh adjoint equations. The mesh adjoint equation provides a implification of the adjoint optimisation framework which can speed up an optimisation by removing the bottleneck of needing to calculate the mesh sensitivity.udThe surface sensitivity can be used as a design tool a designer to the most important regions on an aircraft surface. This thesis focusses on using shock control bumps and surface contour bumps in drag sensitive regions on transonic aerofoils and wings to reduce drag. Usually a designer has the surface pressure and streamlines to guide the device placement, however these can mislead as it is not clear which areas will have the most impact on drag reduction. The drag surface sensitivity gives a direct link between the drag coefficient and a potential change in the wing surface in the form of a derivative. This method was proved successful for reducing drag when optimisation was localised to the drag sensitive regions on the wing.udA new method for calculating the surface sensitivity using the Delaunay Graph Mapping (DGM) mesh movement has been developed. This provides an explicit and efficient mapping of the mesh sensitivity to the surface senstivity. Previously, this required the solution of a large and costly linear system using a mesh movement such as Linear Elasticity (LE) to move the mesh. The DGM method is comparedudagainst analytical solutions, finite difference and the LE mesh adjoint to show that the DGM mesh adjoint will provide an accurate calculation of the gradients on the wing surface. The DGM mesh adjoint has been shown to successfully find a minima when optimising shock bumps on a 3D geometry showing that it is a robust and capable method for optimisation.
机译:这项研究的目的是利用表面灵敏度来辅助流量控制设备的设计和放置,并开发一种使用网格伴随方程来计算表面灵敏度的新的有效方法。网格伴随方程提供了对伴随优化框架的简化,它可以消除需要计算网格敏感度的瓶颈,从而加快优化速度。 ud表面敏感度可以用作设计工具,使设计人员可以对曲面上最重要的区域进行设计。飞机表面。本文的重点是在跨音速翼型和机翼的阻力敏感区域中使用减震凸块和表面轮廓凸块,以减少阻力。通常,设计人员需要表面压力和流线来指导设备放置,但是由于不清楚哪个区域会对减阻产生最大影响,因此这些设计可能会产生误导。阻力表面灵敏度以导数形式直接在阻力系数和机翼表面的电位变化之间建立联系。实践证明,该方法可以有效地减少阻力,优化方法仅限于机翼上的阻力敏感区域。 ud已经开发了一种使用Delaunay图映射(DGM)网格运动来计算表面灵敏度的新方法。这提供了网格灵敏度到表面灵敏度的明确而有效的映射。以前,这需要使用网格运动(例如线性弹性(LE))来移动网格的大型且昂贵的线性系统解决方案。通过比较解析方法,有限差分和LE网格连接,对DGM方法进行了比较,结果表明DGM网格连接将为机翼表面的梯度提供精确的计算。在优化3D几何体上的冲击波时,DGM网格伴生已显示成功找到一个最小值,这表明它是一种强大且功能强大的优化方法。

著录项

  • 作者

    Hinchliffe Benjamin Lee;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号