...
首页> 外文期刊>Shock Waves >The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils
【24h】

The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

机译:跨音速翼型单,双冲击控制凸点基于梯度的伴随多点优化的应用

获取原文
获取原文并翻译 | 示例

摘要

A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.
机译:冲击控制凸点(SCB)是一种流动控制方法,它在柔性机翼表面使用局部小变形来显着降低冲击波的强度以及在跨音速流中产生的波阻力。大多数已报道的研究致力于在单一流动条件下进行优化。在这里,我们使用了多点伴随优化方案来优化SCB的形状和位置。实际上,这引入了配备SCB的跨音速翼型,同时针对不同的非设计跨音速飞行条件进行了优化。在这里,我们使用这种优化算法来在广泛的非设计马赫数范围内增强和优化两个基准机翼(即RAE-2822和NACA-64-A010)中的SCB性能。将所有结果与通常的单点优化进行比较。我们使用湍流粘性流的数值模拟和基于梯度的伴随算法来找到SCB的最佳位置和形状。我们显示出,相比于在特定飞行条件下的无撞设计,SCB的应用可能使RAE-2822机翼的空气动力学性能提高21.9%,对于NACA-64-A010机翼提高22.8%。我们还研究了同时使用两个凸块用于机翼的上表面和下表面。与一次飞行条件下的干净翼型相比,RAE-2822的改进率为26.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号