首页> 外文OA文献 >On subharmonic functions and differential geometry in the large
【2h】

On subharmonic functions and differential geometry in the large

机译:关于大的次谐波函数和微分几何

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This issue is proffesor H. Hopf. He drew our attention to the connection between differential geometry and potential theory which is revealed by relations (1.3) and (1.4). For example, the function u(x,y) is subharmonic in a certain (x,у)-parameter region if and only if in the corresponding domain on M. This fact had already been used by E. F. Beckenbach and T. Rado in their proof of the isoperimetric inequality on surfaces of negative curvature. Analogously, и is super-harmonic if and only if . Furthermore, (1.4) discloses an even deeper connection: The surface integral of К, considered as a set function, is essentially the measure associated with и. Consequently, results of differential geometry in the large involving the curvatura integra, such as those due to S. Cohn- Vossen, F. Fiala, Ch. Blanc and F. Fiala, have a potentialtheoretical meaning. It is therefore natural to apply functiontheoretical methods to this field in the hope that not only other (and eventually simpler) proofs of known results will be found, but also theorems which are new in both their differential geometrical and potential-theoretical aspects.When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35035
机译:这个问题是H. Hopf先生。他提请我们注意微分几何和势能理论之间的联系,这由关系(1.3)和(1.4)揭示。例如,当且仅当在M的相应域中,函数u(x,y)在某个(x,у)参数区域中是次谐波的。EFBeckenbach和T. Rado已经在它们的对应域中使用了这一事实。负曲率表面上的等距不等式的证明。类似地,当且仅当时,и是超调和的。此外,(1.4)公开了更深层次的联系:К的表面积分(被视为设定函数)本质上是与и相关的度量。因此,大的几何差异结果涉及弯曲积分,例如由于S. Cohn-Vossen,F. Fiala,Ch。所致。 Blanc和F. Fiala具有潜在的理论意义。因此,很自然地将函数理论方法应用于该领域,希望不仅可以找到已知结果的其他(最终更简单的)证明,而且可以找到在微分几何和势能理论方面都是新的定理。引用该文档,请使用以下链接http://essuir.sumdu.edu.ua/handle/123456789/35035

著录项

  • 作者

    Legostova Ye.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号