首页> 外文OA文献 >Laterally confined THz sources and graphene based THz optics
【2h】

Laterally confined THz sources and graphene based THz optics

机译:横向受限太赫兹源和基于石墨烯的太赫兹光学器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The region between the infrared and microwave region in the electromagnetic spectrum, the Terahertz (THz) gap, provides an exciting opportunity for future wireless communications as this band has been under utilised. This doctoral work takes a two-pronged approach into closing the THz gap with low-dimensional materials. The first attempt addresses the need for a compact THz source that can operate at room temperature. The second approach addresses the need to build optical elements such as filters and modulators in the THz spectrum.Terahertz quantum cascade lasers (THz QCLs) are one of the most compact, powerful sources of coherent radiation that bridge the terahertz gap. However, their cryogenic requirements for operation limit the scope of the applications. This is because of the electron-electron scattering and heating of the 2-dimensional free electron gas which leads to significant optical phonon scattering of the hot electrons. Theoretical studies in laterally confined QCL structures have predicted enhanced lifetime of the upper state through suppression of the non-radiative intersubband relaxation of carriers, which leads to lower threshold, and higher temperature performance. Lithographically defined vertical nanopillar arrays with electrostatic radius less than tens of nm offer a possible route to achieve lateral confinement, which can be integrated into QCL structures. A typical gain medium in a QCL consists of at least 100 repeat periods, with a thickness of 6-14 micron. For practical implementation of the top-down approach, restrictions are imposed by aspect ratios that can be achieved in present dry-etching systems. Typically, for sub-200 nm radius pillars, the thickness ranges from 1-3.5 micron. It is therefore necessary to work with THz QCLs based on 3-4 quantum well active regions, so as to maximise the number of repeat periods (hence gain) within an ultra-thin active region.After an introductory chapter, Chapter 2 presents a theoretical treatise on the realistic electrostatic potential in a lithographically defined nanopillar by scaling from a single quantum well (resonant tunnelling diode) to a THz QCL. Chapter 2 also discusses, the effect of lateral confinement on the intersubband states and the plasmonic mode in a THz QCL. One of the key experimental challenges in scaling down from QCLs to quantum-dot cascade lasers is the electrical injection into the nanopillars. This involves insulation and planarisation of the high aspect-ratio nanopillar arrays. Furthermore, the choice of the planarising layer is critical since it determines the loss of any optical mode. This experimental challenge is solved in Chapter 3. Chapter 4 presents the electro-optic performance of low-repeat period QCLs with an active region thickness that is less than 3.5 micron.Another topic of recent interest in the THz optics community is plasmonics in graphene. This is because the bound electromagnetic modes (plasmons) are tightly confined to the surface and can also be tuned with carrier concentration. Plasmonic resonance at terahertz frequencies can be achieved by gating graphene grown via chemical vapourdeposition (CVD) to a high carrier concentration. THz time domain spectroscopy of such gated monolayer graphene shows resonance features around 1.6 THz superimposed on the Drude-like frequency response of graphene which may be related to the inherent poly-crystallinity of CVD graphene. Chapter 5 discusses these results, as an understanding of these features is necessary for the development of future THz optical elements based on CVD graphene. Chapter 5 finally describes how the gate tunability of THz transmission through graphene can be exploited to indirectly modulate a THz QCL.Chapter 6 presents ideas from this doctoral work, which can be developed in future to address the issues of enhanced temperature performance of THz QCLs and to realise realistic THz devices based on graphene.
机译:由于该频段的利用不足,电磁频谱中红外和微波区域之间的区域(太赫兹(THz)间隙)为未来的无线通信提供了令人兴奋的机会。这项博士工作采用两方面的方法来缩小低尺寸材料的太赫兹间隙。首次尝试解决了对可在室温下工作的紧凑型THz光源的需求。第二种方法解决了在THz光谱中构建光学元件(如滤光片和调制器)的需求。太赫兹量子级联激光器(THz QCL)是弥合太赫兹间隙的最紧凑,功能最强大的相干辐射源之一。但是,它们对操作的低温要求限制了应用范围。这是由于二维自由电子气的电子-电子散射和加热导致热电子发生显着的光子声子散射。横向约束QCL结构的理论研究通过抑制载流子的非辐射子带间弛豫来预测较高态的寿命,这将导致较低的阈值和较高的温度性能。光刻法定义的静电半径小于几十纳米的垂直纳米柱阵列为实现横向限制提供了一种可能的途径,可以将其整合到QCL结构中。 QCL中的典型增益介质包含至少100个重复周期,厚度为6-14微米。对于自顶向下方法的实际实施,由当前干蚀刻系统中可实现的纵横比来施加限制。通常,对于半径小于200 nm的柱子,厚度范围为1-3.5微米。因此,有必要使用基于3-4个量子阱有源区的THz QCL,以使超薄有源区内的重复周期(从而获得增益)最大化。在介绍性章节之后,第2章介绍了一个理论。通过从单量子阱(谐振隧穿二极管)到THz QCL的缩放,讨论了光刻定义的纳米柱中的实际静电势。第2章还讨论了横向限制对THz QCL中子带间状态和等离子体模式的影响。从QCL缩小到量子点级联激光器的主要实验挑战之一是电注入纳米柱中。这涉及高纵横比纳米柱阵列的绝缘和平坦化。此外,平坦化层的选择是关键的,因为它决定了任何光学模式的损失。这一实验挑战在第3章中得到了解决。第4章介绍了有源区域厚度小于3.5微米的低重复周期QCL的电光性能。太赫兹光学社区中最近引起关注的另一个主题是石墨烯中的等离子体。这是因为绑定的电磁模式(等离激元)被严格限制在表面上,并且还可以通过载流子浓度进行调整。通过将通过化学气相沉积(CVD)生长的石墨烯选通到高载流子浓度,可以实现太赫兹频率的等离子体共振。这种门控单层石墨烯的THz时域光谱显示出1.6 THz左右的共振特征叠加在石墨烯的Drude频率响应上,这可能与CVD石墨烯的固有多晶性有关。第5章讨论了这些结果,因为对这些特征的理解对于开发基于CVD石墨烯的未来THz光学元件是必需的。第5章最后描述了如何利用THz通过石墨烯传输的栅极可调性来间接调制THz QCL。第6章介绍了这项博士论文的构想,可以在将来开发以解决THz QCL的增强温度性能和实现基于石墨烯的逼真的太赫兹器件。

著录项

  • 作者

    Badhwar Shruti;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号